

G Node Factory

[image: pre-commit] [https://github.com/pre-commit/pre-commit]
[image: Black] [https://github.com/psf/black]

The GNodeFactory [https://gridworks.readthedocs.io/en/latest/g-node-factory.html] is a foundational actor in GridWorks.
Please go to Gridworks Docs [https://gridworks.readthedocs.io/en/latest/index.html] to read more, and
go to The Millinocket Tutorial [https://gridworks.readthedocs.io/en/latest/millinocket-tutorial.html] for a dev use-case of
this repo.

This repo has been developed through the generous funding of a grant provided by the Algorand Foundation [https://www.algorand.foundation/].

Testing

pytest -v

Code derivation tools

The primary derivation tool used for this is ssot.me [https://explore.ssot.me/app/#!/home], developed by EJ Alexandra of An Abstract Level LLC [https://effortlessapi.com/pages/effortlessapi/blog]. All of the xslt code in CodeGeneration uses this tool.

The ssotme cli and its upstream ssotme service pull data from our private airtable [https://airtable.com/appgibWM6WZW20bBx/tblRducbzl15OWmwv/viwIvHvZcrMELIP3x?blocks=hide] down into an odxml file and a json file, and then references local .xslt scripts in order to derive code. The .xslt allows for two toggles - one where files are always overwritten, and one where the derivation tools will leave files alone once any hand-written code is added. Mostly that toggle is set to always overwrite since we are working with immutable schemata. Note that the ssotme cli requires an internet connection to work, since it needs to access the upstream ssotme service.

If you want to add enums or schema, you will need access to the ssotme cli and the airtable. Contact Jessica for this.

Credits

This project was generated from @cjolowicz [https://github.com/cjolowicz]’s Hypermodern Python Cookiecutter [https://github.com/cjolowicz/cookiecutter-hypermodern-python] template.

Usage

g-node-factory

G Node Factory.

g-node-factory [OPTIONS]

Options

	
--version

	Show the version and exit.

Reference

gnf

G Node Factory.

Contributor Guide

Thank you for your interest in improving this project.
This project is open-source under the MIT license [https://opensource.org/licenses/MIT] and
welcomes contributions in the form of bug reports, feature requests, and pull requests.

Here is a list of important resources for contributors:

	Source Code [https://github.com/thegridelectric/g-node-factory]

	Documentation [https://g-node-factory.readthedocs.io/]

	Issue Tracker [https://github.com/thegridelectric/g-node-factory/issues]

	Code of Conduct

How to report a bug

Report bugs on the Issue Tracker [https://github.com/thegridelectric/g-node-factory/issues].

When filing an issue, make sure to answer these questions:

	Which operating system and Python version are you using?

	Which version of this project are you using?

	What did you do?

	What did you expect to see?

	What did you see instead?

The best way to get your bug fixed is to provide a test case,
and/or steps to reproduce the issue.

How to request a feature

Request features on the Issue Tracker [https://github.com/thegridelectric/g-node-factory/issues].

How to set up your development environment

You need Python 3.10+ and the following tools:

	Poetry [https://python-poetry.org/]

	Nox [https://nox.thea.codes/]

	nox-poetry [https://nox-poetry.readthedocs.io/]

Install the package with development requirements:

$ poetry install

You can now run an interactive Python session,
or the command-line interface:

$ poetry run python
$ poetry run g-node-factory

How to test the project

Run the full test suite:

$ nox

List the available Nox sessions:

$ nox --list-sessions

You can also run a specific Nox session.
For example, invoke the unit test suite like this:

$ nox --session=tests

Unit tests are located in the tests directory,
and are written using the pytest [https://pytest.readthedocs.io/] testing framework.

How to submit changes

Open a pull request [https://github.com/thegridelectric/g-node-factory/pulls] to submit changes to this project.

Your pull request needs to meet the following guidelines for acceptance:

	The Nox test suite must pass without errors and warnings.

	If your changes add functionality, update the documentation accordingly.

Feel free to submit early, though—we can always iterate on this.

To run linting and code formatting checks before committing your change, you can install pre-commit as a Git hook by running the following command:

$ nox --session=pre-commit -- install

It is recommended to open an issue before starting work on anything.
This will allow a chance to talk it over with the owners and validate your approach.

GridWorks Energy Consulting Code of Conduct

Basic Truth

All humans are worthy.

Scope

This Code of Conduct applies to moderation of comments, issues and commits within
this repository to support its alignment to the above basic truth.

Enforcement Responsibilities

GridWorks Energy Consulting LLC [https://gridworks-consulting.com/] (gridworks@gridworks-consulting.com)
owns and administers this repository, and is ultimately responsible for enforcement of standards of
behavior. They are responsible for merges to dev and main branches, and maintain the right and
responsibility to remove, edit, or reject comments, commits, code, docuentation edits, issues, and other contributions
that are not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

If you read something in this repo that you want GridWorks to consider moderating, please
send an email to them at gridworks@gridworks-consulting.com.
All complaints will be reviewed and investigated, and GridWorks will respect
the privacy and security of the reporter of any incident.

What not to add to this repo

Ways to trigger GridWorks moderation enforcement:

	Publish others’ private information, such as a physical or email address,
without their explicit permission

	Use of sexualized language or imagery, or make sexual advances

	Troll

Suggestions

	Empathize

	Recognize you are worthy of contributing, and do so in the face of confusion and doubt; you can help clarify things for everyone

	Be interested in differing opinions, viewpoints, and experiences

	Give and accept constructive feedback

	Accept responsibility for your mistakes and learn from them

	Recognize everybody makes mistakes, and forgive

	Focus on the highest good for all

Enforcement Escalation

1. Correction

A private, written request from GridWorks to change or edit a comment, commit, or issue.

2. Warning

With a warning, GridWorks may remove your comments, commits or issues. She may also
freeze a conversation.

3. Temporary Ban

A temporary ban from any sort of interaction or public
communication within the repository for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.

4. Permanent Ban

A permanent ban from any sort of interaction within the repository.

Attribution

This Code of Conduct is loosely adapted from the Contributor Covenant [https://www.contributor-covenant.org],
version 2.1, available at
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html.

Community Impact Guidelines were inspired by
Mozilla’s code of conduct enforcement ladder [https://github.com/mozilla/diversity].

For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

License

MIT License

Copyright © 2022 Jessica Millar

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gnf	

 	
 	
 gnf.types	

Index

 Symbols
 | B
 | C
 | D
 | G
 | H
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | T

Symbols

 	
 	
 --version

 	g-node-factory command line option

B

 	
 	BasegnodeCtnCreate (class in gnf.types)

 	BasegnodeCtnCreate_Maker (class in gnf.types)

 	BaseGNodeGt (class in gnf.types)

 	BaseGNodeGt_Maker (class in gnf.types)

 	BasegnodeMarketmakerCreate (class in gnf.types)

 	BasegnodeMarketmakerCreate_Maker (class in gnf.types)

 	BasegnodeOtherCreate (class in gnf.types)

 	BasegnodeOtherCreate_Maker (class in gnf.types)

 	
 	BasegnodesBroadcast (class in gnf.types)

 	BasegnodesBroadcast_Maker (class in gnf.types)

 	BasegnodeScadaCreate (class in gnf.types)

 	BasegnodeScadaCreate_Maker (class in gnf.types)

 	BasegnodesGet (class in gnf.types)

 	BasegnodesGet_Maker (class in gnf.types)

 	BasegnodeTerminalassetCreate (class in gnf.types)

 	BasegnodeTerminalassetCreate_Maker (class in gnf.types)

C

 	
 	check_axiom_1() (gnf.types.BasegnodeScadaCreate class method)

 	(gnf.types.GwCertId class method)

 	(gnf.types.InitialTadeedAlgoCreate class method)

 	(gnf.types.InitialTadeedAlgoOptin class method)

 	(gnf.types.InitialTadeedAlgoTransfer class method)

 	(gnf.types.ScadaCertTransfer class method)

 	(gnf.types.TavalidatorcertAlgoCreate class method)

 	(gnf.types.TavalidatorcertAlgoTransfer class method)

 	check_axiom_2() (gnf.types.BasegnodeScadaCreate class method)

 	(gnf.types.InitialTadeedAlgoCreate class method)

 	(gnf.types.InitialTadeedAlgoOptin class method)

 	(gnf.types.InitialTadeedAlgoTransfer class method)

 	(gnf.types.TavalidatorcertAlgoTransfer class method)

 	check_axiom_3() (gnf.types.InitialTadeedAlgoCreate class method)

 	check_half_signed_cert_creation_mtx() (gnf.types.TavalidatorcertAlgoCreate class method)

 	check_is_algo_address_string_format (class in gnf.types.base_g_node_gt)

 	(class in gnf.types.basegnode_ctn_create)

 	(class in gnf.types.basegnode_scada_create)

 	(class in gnf.types.basegnode_terminalasset_create)

 	(class in gnf.types.discoverycert_algo_create)

 	(class in gnf.types.discoverycert_algo_transfer)

 	(class in gnf.types.gw_cert_id)

 	(class in gnf.types.initial_tadeed_algo_create)

 	(class in gnf.types.initial_tadeed_algo_optin)

 	(class in gnf.types.initial_tadeed_algo_transfer)

 	(class in gnf.types.new_tadeed_algo_optin)

 	(class in gnf.types.new_tadeed_send)

 	(class in gnf.types.old_tadeed_algo_return)

 	(class in gnf.types.tavalidatorcert_algo_create)

 	(class in gnf.types.tavalidatorcert_algo_transfer)

 	(class in gnf.types.terminalasset_certify_hack)

 	check_is_algo_msg_pack_encoded (class in gnf.types.basegnode_scada_create)

 	(class in gnf.types.initial_tadeed_algo_create)

 	(class in gnf.types.initial_tadeed_algo_optin)

 	(class in gnf.types.initial_tadeed_algo_transfer)

 	(class in gnf.types.new_tadeed_algo_optin)

 	(class in gnf.types.new_tadeed_send)

 	(class in gnf.types.old_tadeed_algo_return)

 	(class in gnf.types.scada_cert_transfer)

 	(class in gnf.types.tavalidatorcert_algo_create)

 	(class in gnf.types.tavalidatorcert_algo_transfer)

 	
 	check_is_hex_char (class in gnf.types.heartbeat_a)

 	check_is_left_right_dot (class in gnf.types.base_g_node_gt)

 	(class in gnf.types.basegnode_ctn_create)

 	(class in gnf.types.basegnode_marketmaker_create)

 	(class in gnf.types.basegnode_other_create)

 	(class in gnf.types.basegnode_scada_create)

 	(class in gnf.types.basegnode_terminalasset_create)

 	(class in gnf.types.basegnodes_broadcast)

 	(class in gnf.types.basegnodes_get)

 	(class in gnf.types.debug_tc_reinitialize_time)

 	(class in gnf.types.discoverycert_algo_create)

 	(class in gnf.types.discoverycert_algo_transfer)

 	(class in gnf.types.initial_tadeed_algo_optin)

 	(class in gnf.types.pause_time)

 	(class in gnf.types.resume_time)

 	(class in gnf.types.scada_cert_transfer)

 	(class in gnf.types.sla_enter)

 	(class in gnf.types.tadeed_specs_hack)

 	(class in gnf.types.terminalasset_certify_hack)

 	check_is_uuid_canonical_textual (class in gnf.types.base_g_node_gt)

 	(class in gnf.types.basegnode_ctn_create)

 	(class in gnf.types.basegnode_marketmaker_create)

 	(class in gnf.types.basegnode_other_create)

 	(class in gnf.types.basegnode_terminalasset_create)

 	(class in gnf.types.basegnodes_broadcast)

 	(class in gnf.types.basegnodes_get)

 	(class in gnf.types.debug_tc_reinitialize_time)

 	(class in gnf.types.pause_time)

 	(class in gnf.types.resume_time)

 	check_validator_addr() (gnf.types.TavalidatorcertAlgoCreate class method)

 	(gnf.types.TavalidatorcertAlgoTransfer class method)

D

 	
 	DebugTcReinitializeTime (class in gnf.types)

 	DebugTcReinitializeTime_Maker (class in gnf.types)

 	DiscoverycertAlgoCreate (class in gnf.types)

 	
 	DiscoverycertAlgoCreate_Maker (class in gnf.types)

 	DiscoverycertAlgoTransfer (class in gnf.types)

 	DiscoverycertAlgoTransfer_Maker (class in gnf.types)

G

 	
 	
 g-node-factory command line option

 	--version

 	
 gnf

 	module

 	
 	
 gnf.types

 	module

 	GwCertId (class in gnf.types)

 	GwCertId_Maker (class in gnf.types)

H

 	
 	HeartbeatA (class in gnf.types)

 	
 	HeartbeatA_Maker (class in gnf.types)

I

 	
 	InitialTadeedAlgoCreate (class in gnf.types)

 	InitialTadeedAlgoCreate_Maker (class in gnf.types)

 	InitialTadeedAlgoOptin (class in gnf.types)

 	
 	InitialTadeedAlgoOptin_Maker (class in gnf.types)

 	InitialTadeedAlgoTransfer (class in gnf.types)

 	InitialTadeedAlgoTransfer_Maker (class in gnf.types)

M

 	
 	
 module

 	gnf

 	gnf.types

N

 	
 	NewTadeedAlgoOptin (class in gnf.types)

 	NewTadeedAlgoOptin_Maker (class in gnf.types)

 	
 	NewTadeedSend (class in gnf.types)

 	NewTadeedSend_Maker (class in gnf.types)

O

 	
 	OldTadeedAlgoReturn (class in gnf.types)

 	
 	OldTadeedAlgoReturn_Maker (class in gnf.types)

P

 	
 	PauseTime (class in gnf.types)

 	
 	PauseTime_Maker (class in gnf.types)

R

 	
 	ResumeTime (class in gnf.types)

 	
 	ResumeTime_Maker (class in gnf.types)

S

 	
 	ScadaCertTransfer (class in gnf.types)

 	ScadaCertTransfer_Maker (class in gnf.types)

 	
 	SlaEnter (class in gnf.types)

 	SlaEnter_Maker (class in gnf.types)

T

 	
 	TadeedSpecsHack (class in gnf.types)

 	TadeedSpecsHack_Maker (class in gnf.types)

 	TatradingrightsAlgoCreate (class in gnf.types)

 	TatradingrightsAlgoCreate_Maker (class in gnf.types)

 	TavalidatorcertAlgoCreate (class in gnf.types)

 	TavalidatorcertAlgoCreate_Maker (class in gnf.types)

 	TavalidatorcertAlgoTransfer (class in gnf.types)

 	TavalidatorcertAlgoTransfer_Maker (class in gnf.types)

 	TerminalassetCertifyHack (class in gnf.types)

 	TerminalassetCertifyHack_Maker (class in gnf.types)

 	tuple_to_type() (gnf.types.BasegnodeCtnCreate_Maker class method)

 	(gnf.types.BaseGNodeGt_Maker class method)

 	(gnf.types.BasegnodeMarketmakerCreate_Maker class method)

 	(gnf.types.BasegnodeOtherCreate_Maker class method)

 	(gnf.types.BasegnodesBroadcast_Maker class method)

 	(gnf.types.BasegnodeScadaCreate_Maker class method)

 	(gnf.types.BasegnodesGet_Maker class method)

 	(gnf.types.BasegnodeTerminalassetCreate_Maker class method)

 	(gnf.types.DebugTcReinitializeTime_Maker class method)

 	(gnf.types.DiscoverycertAlgoCreate_Maker class method)

 	(gnf.types.DiscoverycertAlgoTransfer_Maker class method)

 	(gnf.types.GwCertId_Maker class method)

 	(gnf.types.HeartbeatA_Maker class method)

 	(gnf.types.InitialTadeedAlgoCreate_Maker class method)

 	(gnf.types.InitialTadeedAlgoOptin_Maker class method)

 	(gnf.types.InitialTadeedAlgoTransfer_Maker class method)

 	(gnf.types.NewTadeedAlgoOptin_Maker class method)

 	(gnf.types.NewTadeedSend_Maker class method)

 	(gnf.types.OldTadeedAlgoReturn_Maker class method)

 	(gnf.types.PauseTime_Maker class method)

 	(gnf.types.ResumeTime_Maker class method)

 	(gnf.types.ScadaCertTransfer_Maker class method)

 	(gnf.types.SlaEnter_Maker class method)

 	(gnf.types.TadeedSpecsHack_Maker class method)

 	(gnf.types.TatradingrightsAlgoCreate_Maker class method)

 	(gnf.types.TavalidatorcertAlgoCreate_Maker class method)

 	(gnf.types.TavalidatorcertAlgoTransfer_Maker class method)

 	(gnf.types.TerminalassetCertifyHack_Maker class method)

 	
 	type_to_tuple() (gnf.types.BasegnodeCtnCreate_Maker class method)

 	(gnf.types.BaseGNodeGt_Maker class method)

 	(gnf.types.BasegnodeMarketmakerCreate_Maker class method)

 	(gnf.types.BasegnodeOtherCreate_Maker class method)

 	(gnf.types.BasegnodesBroadcast_Maker class method)

 	(gnf.types.BasegnodeScadaCreate_Maker class method)

 	(gnf.types.BasegnodesGet_Maker class method)

 	(gnf.types.BasegnodeTerminalassetCreate_Maker class method)

 	(gnf.types.DebugTcReinitializeTime_Maker class method)

 	(gnf.types.DiscoverycertAlgoCreate_Maker class method)

 	(gnf.types.DiscoverycertAlgoTransfer_Maker class method)

 	(gnf.types.GwCertId_Maker class method)

 	(gnf.types.HeartbeatA_Maker class method)

 	(gnf.types.InitialTadeedAlgoCreate_Maker class method)

 	(gnf.types.InitialTadeedAlgoOptin_Maker class method)

 	(gnf.types.InitialTadeedAlgoTransfer_Maker class method)

 	(gnf.types.NewTadeedAlgoOptin_Maker class method)

 	(gnf.types.NewTadeedSend_Maker class method)

 	(gnf.types.OldTadeedAlgoReturn_Maker class method)

 	(gnf.types.PauseTime_Maker class method)

 	(gnf.types.ResumeTime_Maker class method)

 	(gnf.types.ScadaCertTransfer_Maker class method)

 	(gnf.types.SlaEnter_Maker class method)

 	(gnf.types.TadeedSpecsHack_Maker class method)

 	(gnf.types.TatradingrightsAlgoCreate_Maker class method)

 	(gnf.types.TavalidatorcertAlgoCreate_Maker class method)

 	(gnf.types.TavalidatorcertAlgoTransfer_Maker class method)

 	(gnf.types.TerminalassetCertifyHack_Maker class method)

GridWorks User Wiki

This repository is a work in progress.

Running locally

[image: alt_text]{:style=”height:300px;width:200px”}

Publishing

[image: alt_text]

Styling

[image: alt_text]

Contributing

[image: alt_text]

Images

Images must be saved in the docs/img folder of the wiki. Image calls in the markdown files can be done as so, where image-name.png is the name of the file:

![img](img/image-name.png)

To change the size of an image, use the following size modifier:

![img](img/image-name.png){:style="height:300px;width:200px"}

SDK for gridworks-atn [https://pypi.org/project/gridworks-atn/] Types

The Python classes enumerated below provide an interpretation of gridworks-atn
type instances (serialized JSON) as Python objects. Types are the building
blocks for all GridWorks APIs. You can read more about how they work
here [https://gridworks.readthedocs.io/en/latest/api-sdk-abi.html], and
examine their API specifications here.
The Python classes below also come with methods for translating back and
forth between type instances and Python objects.

List of all the schema types

TYPE SDKS

	 BaseGNodeGt

	 BasegnodeCtnCreate

	 BasegnodeMarketmakerCreate

	 BasegnodeOtherCreate

	 BasegnodeScadaCreate

	 BasegnodeTerminalassetCreate

	 BasegnodesBroadcast

	 BasegnodesGet

	 DebugTcReinitializeTime

	 DiscoverycertAlgoCreate

	 DiscoverycertAlgoTransfer

	 GwCertId

	 HeartbeatA

	 InitialTadeedAlgoCreate

	 InitialTadeedAlgoOptin

	 InitialTadeedAlgoTransfer

	 NewTadeedAlgoOptin

	 NewTadeedSend

	 OldTadeedAlgoReturn

	 PauseTime

	 ResumeTime

	 ScadaCertTransfer

	 SlaEnter

	 TadeedSpecsHack

	 TatradingrightsAlgoCreate

	 TavalidatorcertAlgoCreate

	 TavalidatorcertAlgoTransfer

	 TerminalassetCertifyHack

Type API Specs

BaseGNodeGt

{
 "gwapi": "001",
 "type_name": "base.g.node.gt",
 "version": "002",
 "owner": "gridworks@gridworks-consulting.com",
 "description": ". BaseGNode. Authority is GNodeFactory.",
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 },
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 },
 "AlgoAddressStringFormat": {
 "type": "string",
 "description": "String of length 32, characters are all base32 digits.",
 "example": "RNMHG32VTIHTC7W3LZOEPTDGREL5IQGK46HKD3KBLZHYQUCAKLMT4G5ALI"
 }
 },
 "enums": {
 "CoreGNodeRole000": {
 "type": "string",
 "name": "core.g.node.role.000",
 "description": "CoreGNodeRole assigned by GNodeFactory",
 "url": "https://gridworks.readthedocs.io/en/latest/core-g-node-role.html",
 "oneOf": [
 {
 "const": "00000000",
 "title": "Other",
 "description": ""
 },
 {
 "const": "0f8872f7",
 "title": "TerminalAsset",
 "description": ""
 },
 {
 "const": "d9823442",
 "title": "AtomicTNode",
 "description": ""
 },
 {
 "const": "86f21dd2",
 "title": "MarketMaker",
 "description": ""
 },
 {
 "const": "9521af06",
 "title": "AtomicMeteringNode",
 "description": ""
 },
 {
 "const": "4502e355",
 "title": "ConductorTopologyNode",
 "description": ""
 },
 {
 "const": "d67e564e",
 "title": "InterconnectionComponent",
 "description": ""
 },
 {
 "const": "7a8e4046",
 "title": "Scada",
 "description": ""
 }
]
 },
 "GNodeStatus100": {
 "type": "string",
 "name": "g.node.status.100",
 "description": "Enum for managing GNode lifecycle",
 "url": "https://gridworks.readthedocs.io/en/latest/g-node-status.html",
 "oneOf": [
 {
 "const": "00000000",
 "title": "Unknown",
 "description": "Default value"
 },
 {
 "const": "153d3475",
 "title": "Pending",
 "description": "The GNode exists but cannot be used yet."
 },
 {
 "const": "a2cfc2f7",
 "title": "Active",
 "description": "The GNode can be used."
 },
 {
 "const": "839b38db",
 "title": "PermanentlyDeactivated",
 "description": "The GNode can no longer be used, now or in the future."
 },
 {
 "const": "f5831e1d",
 "title": "Suspended",
 "description": "The GNode cannot be used, but may become active in the future."
 }
]
 }
 },
 "properties": {
 "GNodeId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "",
 "required": true
 },
 "Alias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "Status": {
 "type": "string",
 "format": "GNodeStatus100",
 "title": "",
 "required": true
 },
 "Role": {
 "type": "string",
 "format": "CoreGNodeRole000",
 "title": "",
 "required": true
 },
 "GNodeRegistryAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "",
 "required": true
 },
 "PrevAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": false
 },
 "GpsPointId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "",
 "required": false
 },
 "OwnershipDeedId": {
 "type": "integer",
 "minimum": 0,
 "title": "",
 "required": false
 },
 "OwnershipDeedValidatorAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "",
 "required": false
 },
 "OwnerAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "",
 "required": false
 },
 "DaemonAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "",
 "required": false
 },
 "TradingRightsId": {
 "type": "integer",
 "minimum": 0,
 "title": "",
 "required": false
 },
 "ScadaAlgoAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "",
 "required": false
 },
 "ScadaCertId": {
 "type": "integer",
 "minimum": 0,
 "title": "",
 "required": false
 },
 "TypeName": {
 "type": "string",
 "value": "base.g.node.gt.002",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "002",
 "required": true
 }
 }
}

BasegnodeCtnCreate

{
 "gwapi": "001",
 "type_name": "basegnode.ctn.create",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "",
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 },
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 },
 "AlgoAddressStringFormat": {
 "type": "string",
 "description": "String of length 32, characters are all base32 digits.",
 "example": "RNMHG32VTIHTC7W3LZOEPTDGREL5IQGK46HKD3KBLZHYQUCAKLMT4G5ALI"
 }
 },
 "properties": {
 "FromGNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "FromGNodeInstanceId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "",
 "required": true
 },
 "CtnGNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "MicroLat": {
 "type": "integer",
 "title": "",
 "required": true
 },
 "MicroLon": {
 "type": "integer",
 "title": "",
 "required": true
 },
 "ChildAliasList": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "GNodeRegistryAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "basegnode.ctn.create.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 }
}

BasegnodeMarketmakerCreate

{
 "gwapi": "001",
 "type_name": "basegnode.marketmaker.create",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "",
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 },
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 }
 },
 "properties": {
 "TypeName": {
 "type": "string",
 "value": "basegnode.marketmaker.create.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 }
}

BasegnodeOtherCreate

{
 "gwapi": "001",
 "type_name": "basegnode.other.create",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "",
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 },
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 }
 },
 "properties": {
 "TypeName": {
 "type": "string",
 "value": "basegnode.other.create.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 }
}

BasegnodeScadaCreate

{
 "gwapi": "001",
 "type_name": "basegnode.scada.create",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Scada BaseGNode Creation. This is a payload designed to be sent from a TaOwner to the GNodeFactory. The TaOwner creates a private Algorand key and puts it on the Scada Device that will sense and control their TerminalAsset. The public address is associated with the Scada GNode by the GNodeFactory.",
 "formats": {
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 },
 "AlgoAddressStringFormat": {
 "type": "string",
 "description": "String of length 32, characters are all base32 digits.",
 "example": "RNMHG32VTIHTC7W3LZOEPTDGREL5IQGK46HKD3KBLZHYQUCAKLMT4G5ALI"
 },
 "AlgoMsgPackEncoded": {
 "type": "string",
 "description": "Error is not thrown with algosdk.encoding.future_msg_decode(candidate)",
 "example": "gqRtc2lng6ZzdWJzaWeSgaJwa8Qgi1hzb1WaDzF+215cR8xmiRfUQMrnjqHtQV5PiFBAUtmConBrxCD8IT4Zu8vBAhRNsXoWF+2i6q2KyBZrPhmbDCKJD7rBBqFzxEAEp8UcTEJSyTmgw96/mCnNHKfhkdYMCD5jxWejHRmPCrR8U9z/FBVsoCGbjDTTk2L1k7n/eVlumEk/M1KSe48Jo3RocgKhdgGjdHhuiaRhcGFyhaJhbq9Nb2xseSBNZXRlcm1haWSiYXXZKWh0dHA6Ly9sb2NhbGhvc3Q6NTAwMC9tb2xseWNvL3doby13ZS1hcmUvoW3EIItYc29Vmg8xftteXEfMZokX1EDK546h7UFeT4hQQFLZoXQBonVupVZMRFRSo2ZlZc0D6KJmdlGjZ2VuqnNhbmRuZXQtdjGiZ2jEIC/iF+bI4LU6UTgG4SIxyD10PS0/vNAEa93OC5SVRFn6omx2zQQ5pG5vdGXEK01vbGx5IEluYyBUZWxlbWV0cnkgU3VydmV5b3JzIGFuZCBQdXJ2ZXlvcnOjc25kxCDHZxhdCT2TxxxZlZ/H5mIku1s4ulDm3EmU6dYKXCWEB6R0eXBlpGFjZmc="
 }
 },
 "properties": {
 "TaAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "TerminalAsset Alias",
 "description": "GNodeAlias of the TerminalAsset that will be controlled by the new SCADA GNode. The SCADA GNodeAlias will have '.scada' appended to this.",
 "required": true
 },
 "ScadaAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "Algorand address for the SCADA",
 "description": "The TaOwner makes the corresponding private key, puts it on the SCADA device, and then sends this address to the GNodeFactory.",
 "required": true
 },
 "TaDaemonAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "Algorand address of the associated TaDaemon",
 "description": "The TaDaemonAddr will have the TaDeed, and can be used to verify the public address of the TaOwner",
 "required": true
 },
 "GNodeRegistryAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "GNodeRegistry Algorand address",
 "description": "The GNodeRegistry that contains Make/Model information about the SCADA and TerminalAsset",
 "required": true
 },
 "SignedProof": {
 "type": "string",
 "format": "AlgoMsgPackEncoded",
 "title": "Recent transaction signed by the TaOwner",
 "description": "These will be replaced by composite transactions in next gen code.",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "basegnode.scada.create.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "axioms": {
 "Axiom1": {
 "title": "TaOwner is SignedProof signer",
 "description": "The TaDaemonAddr provides the public address for the TaOwner. This TaOwnerAddr must match the signature on the SignedProof."
 },
 "Axiom2": {
 "title": "TaAlias matches TaDeed",
 "description": "The TaDaemonAddr owns a TaDeed for the TaAlias."
 }
 }
}

BasegnodeTerminalassetCreate

{
 "gwapi": "001",
 "type_name": "basegnode.terminalasset.create",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "",
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 },
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 },
 "AlgoAddressStringFormat": {
 "type": "string",
 "description": "String of length 32, characters are all base32 digits.",
 "example": "RNMHG32VTIHTC7W3LZOEPTDGREL5IQGK46HKD3KBLZHYQUCAKLMT4G5ALI"
 }
 },
 "properties": {
 "TaGNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "MicroLon": {
 "type": "integer",
 "title": "",
 "required": true
 },
 "ValidatorAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "",
 "required": true
 },
 "TaOwnerAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "",
 "required": true
 },
 "MicroLat": {
 "type": "integer",
 "title": "",
 "required": true
 },
 "GNodeRegistryAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "",
 "required": true
 },
 "FromGNodeInstanceId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "",
 "required": true
 },
 "FromGNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "basegnode.terminalasset.create.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 }
}

BasegnodesBroadcast

{
 "gwapi": "001",
 "type_name": "basegnodes.broadcast",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "",
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 },
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 }
 },
 "properties": {
 "FromGNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "FromGNodeInstanceId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "",
 "required": true
 },
 "IncludeAllDescendants": {
 "type": "boolean",
 "title": "",
 "required": true
 },
 "TopGNode": {
 "type": "base.g.node.gt.002",
 "title": "",
 "required": true
 },
 "DescendantGNodeList": {
 "type": "base.g.node.gt.002",
 "title": "",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "basegnodes.broadcast.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 }
}

BasegnodesGet

{
 "gwapi": "001",
 "type_name": "basegnodes.get",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "",
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 },
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 }
 },
 "properties": {
 "TopGNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "IncludeAllDescendants": {
 "type": "boolean",
 "title": "",
 "required": true
 },
 "FromGNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "FromGNodeInstanceId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "basegnodes.get.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 }
}

DebugTcReinitializeTime

{
 "gwapi": "001",
 "type_name": "debug.tc.reinitialize.time",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "",
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 },
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 }
 },
 "properties": {
 "ToGNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "FromGNodeInstanceId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "",
 "required": true
 },
 "FromGNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "debug.tc.reinitialize.time.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 }
}

DiscoverycertAlgoCreate

{
 "gwapi": "001",
 "type_name": "discoverycert.algo.create",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "",
 "formats": {
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 },
 "AlgoAddressStringFormat": {
 "type": "string",
 "description": "String of length 32, characters are all base32 digits.",
 "example": "RNMHG32VTIHTC7W3LZOEPTDGREL5IQGK46HKD3KBLZHYQUCAKLMT4G5ALI"
 }
 },
 "enums": {
 "CoreGNodeRole000": {
 "type": "string",
 "name": "core.g.node.role.000",
 "description": "CoreGNodeRole assigned by GNodeFactory",
 "url": "https://gridworks.readthedocs.io/en/latest/core-g-node-role.html",
 "oneOf": [
 {
 "const": "00000000",
 "title": "Other",
 "description": ""
 },
 {
 "const": "0f8872f7",
 "title": "TerminalAsset",
 "description": ""
 },
 {
 "const": "d9823442",
 "title": "AtomicTNode",
 "description": ""
 },
 {
 "const": "86f21dd2",
 "title": "MarketMaker",
 "description": ""
 },
 {
 "const": "9521af06",
 "title": "AtomicMeteringNode",
 "description": ""
 },
 {
 "const": "4502e355",
 "title": "ConductorTopologyNode",
 "description": ""
 },
 {
 "const": "d67e564e",
 "title": "InterconnectionComponent",
 "description": ""
 },
 {
 "const": "7a8e4046",
 "title": "Scada",
 "description": ""
 }
]
 }
 },
 "properties": {
 "GNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "Role": {
 "type": "string",
 "format": "CoreGNodeRole000",
 "title": "",
 "required": true
 },
 "OldChildAliasList": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "DiscovererAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "",
 "required": true
 },
 "SupportingMaterialHash": {
 "type": "string",
 "title": "",
 "required": true
 },
 "MicroLat": {
 "type": "integer",
 "title": "",
 "required": false
 },
 "MicroLon": {
 "type": "integer",
 "title": "",
 "required": false
 },
 "TypeName": {
 "type": "string",
 "value": "discoverycert.algo.create.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 }
}

DiscoverycertAlgoTransfer

{
 "gwapi": "001",
 "type_name": "discoverycert.algo.transfer",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "",
 "formats": {
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 },
 "AlgoAddressStringFormat": {
 "type": "string",
 "description": "String of length 32, characters are all base32 digits.",
 "example": "RNMHG32VTIHTC7W3LZOEPTDGREL5IQGK46HKD3KBLZHYQUCAKLMT4G5ALI"
 }
 },
 "properties": {
 "GNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "DiscovererAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "discoverycert.algo.transfer.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 }
}

GwCertId

{
 "gwapi": "001",
 "type_name": "gw.cert.id",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Clarifies whether cert id is an Algorand Standard Asset or SmartSig",
 "formats": {
 "AlgoAddressStringFormat": {
 "type": "string",
 "description": "String of length 32, characters are all base32 digits.",
 "example": "RNMHG32VTIHTC7W3LZOEPTDGREL5IQGK46HKD3KBLZHYQUCAKLMT4G5ALI"
 }
 },
 "enums": {
 "AlgoCertType000": {
 "type": "string",
 "name": "algo.cert.type.000",
 "description": "Used to distinguish ASA vs SmartSignature certificates",
 "oneOf": [
 {
 "const": "00000000",
 "title": "ASA",
 "description": "Certificate based on Algorand Standard Asset"
 },
 {
 "const": "086b5165",
 "title": "SmartSig",
 "description": "Certificate based on Algorand Smart Signature"
 }
]
 }
 },
 "properties": {
 "Type": {
 "type": "string",
 "format": "AlgoCertType000",
 "title": "",
 "required": true
 },
 "Idx": {
 "type": "integer",
 "minimum": 0,
 "title": "ASA Index",
 "required": false
 },
 "Addr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "Algorand Smart Signature Address",
 "required": false
 },
 "TypeName": {
 "type": "string",
 "value": "gw.cert.id.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "axioms": {
 "Axiom1": {
 "title": "Cert type consistency",
 "description": "If Type is ASA, then Id exists and Addr does not. Otherwise, Addr exists and Id does not."
 }
 },
 "example": {
 "TypeGtEnumSymbol": "00000000",
 "Idx": 14,
 "TypeName": "gw.cert.id",
 "Version": "000"
 }
}

HeartbeatA

{
 "gwapi": "001",
 "type_name": "heartbeat.a",
 "version": "100",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Used to check that an actor can both send and receive messages. Payload for direct messages sent back and forth between actors, for example a Supervisor and one of its subordinates.",
 "url": "https://gridworks.readthedocs.io/en/latest/g-node-instance.html",
 "formats": {
 "HexChar": {
 "type": "string",
 "description": "single-char string in '0123456789abcdefABCDEF'",
 "example": "d"
 }
 },
 "properties": {
 "MyHex": {
 "type": "string",
 "format": "HexChar",
 "title": "Hex character getting sent",
 "required": true
 },
 "YourLastHex": {
 "type": "string",
 "format": "HexChar",
 "title": "Last hex character received from heartbeat partner",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "heartbeat.a.100",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "100",
 "required": true
 }
 }
}

InitialTadeedAlgoCreate

{
 "gwapi": "001",
 "type_name": "initial.tadeed.algo.create",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "TaValidator sends to GNodeFactory to complete creation of an initial TaDeed. If this message is valid, the GNodeFactory co-signs and submits the TaDeed creation. In addition, the GnodeFactory creates a TerminalAsset with GNodeStatus pending. For more information: [TaDeed](https://gridworks.readthedocs.io/en/latest/ta-deed.html) [TaValidator](https://gridworks.readthedocs.io/en/latest/ta-validator.html)",
 "formats": {
 "AlgoAddressStringFormat": {
 "type": "string",
 "description": "String of length 32, characters are all base32 digits.",
 "example": "RNMHG32VTIHTC7W3LZOEPTDGREL5IQGK46HKD3KBLZHYQUCAKLMT4G5ALI"
 },
 "AlgoMsgPackEncoded": {
 "type": "string",
 "description": "Error is not thrown with algosdk.encoding.future_msg_decode(candidate)",
 "example": "gqRtc2lng6ZzdWJzaWeSgaJwa8Qgi1hzb1WaDzF+215cR8xmiRfUQMrnjqHtQV5PiFBAUtmConBrxCD8IT4Zu8vBAhRNsXoWF+2i6q2KyBZrPhmbDCKJD7rBBqFzxEAEp8UcTEJSyTmgw96/mCnNHKfhkdYMCD5jxWejHRmPCrR8U9z/FBVsoCGbjDTTk2L1k7n/eVlumEk/M1KSe48Jo3RocgKhdgGjdHhuiaRhcGFyhaJhbq9Nb2xseSBNZXRlcm1haWSiYXXZKWh0dHA6Ly9sb2NhbGhvc3Q6NTAwMC9tb2xseWNvL3doby13ZS1hcmUvoW3EIItYc29Vmg8xftteXEfMZokX1EDK546h7UFeT4hQQFLZoXQBonVupVZMRFRSo2ZlZc0D6KJmdlGjZ2VuqnNhbmRuZXQtdjGiZ2jEIC/iF+bI4LU6UTgG4SIxyD10PS0/vNAEa93OC5SVRFn6omx2zQQ5pG5vdGXEK01vbGx5IEluYyBUZWxlbWV0cnkgU3VydmV5b3JzIGFuZCBQdXJ2ZXlvcnOjc25kxCDHZxhdCT2TxxxZlZ/H5mIku1s4ulDm3EmU6dYKXCWEB6R0eXBlpGFjZmc="
 }
 },
 "properties": {
 "ValidatorAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "Address of the TaValidator",
 "description": "The Algorand address of the TaValidator who is going to validate the location, device type, and power metering of the TerminalAsset.",
 "required": true
 },
 "HalfSignedDeedCreationMtx": {
 "type": "string",
 "format": "AlgoMsgPackEncoded",
 "title": "Algo mulit-transaction for TaDeed creation",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "initial.tadeed.algo.create.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "axioms": {
 "Axiom1": {
 "title": "Is correct Multisig",
 "description": "Decoded HalfSignedDeedCreationMtx must have type MultisigTransaction from the 2-sig MultiAccount [GnfAdminAddr, ValidatorAddr].",
 "url": "https://gridworks.readthedocs.io/en/latest/g-node-factory.html#gnfadminaddr"
 },
 "Axiom2": {
 "title": "Creates Initial ASA TaDeed",
 "description": "The transaction must create an Algorand Standard Asset - Total is 1 - UnitName is TADEED - Manager is GnfAdminAddr - AssetName has the following characteristics: - length <= 32 characters - LeftRightDot format - final word is '.ta'",
 "url": "https://gridworks.readthedocs.io/en/latest/ta-deed.html#asa-tadeed-specs"
 },
 "Axiom3": {
 "title": "Mtx signed by TaValidator",
 "description": ""
 }
 }
}

InitialTadeedAlgoOptin

{
 "gwapi": "001",
 "type_name": "initial.tadeed.algo.optin",
 "version": "002",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Received by TaDaemon so that it can opt into intial TaDeed. The TaDaemon must opt into the TaDeed before receiving it. This message prompts that action.",
 "formats": {
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 },
 "AlgoAddressStringFormat": {
 "type": "string",
 "description": "String of length 32, characters are all base32 digits.",
 "example": "RNMHG32VTIHTC7W3LZOEPTDGREL5IQGK46HKD3KBLZHYQUCAKLMT4G5ALI"
 },
 "AlgoMsgPackEncoded": {
 "type": "string",
 "description": "Error is not thrown with algosdk.encoding.future_msg_decode(candidate)",
 "example": "gqRtc2lng6ZzdWJzaWeSgaJwa8Qgi1hzb1WaDzF+215cR8xmiRfUQMrnjqHtQV5PiFBAUtmConBrxCD8IT4Zu8vBAhRNsXoWF+2i6q2KyBZrPhmbDCKJD7rBBqFzxEAEp8UcTEJSyTmgw96/mCnNHKfhkdYMCD5jxWejHRmPCrR8U9z/FBVsoCGbjDTTk2L1k7n/eVlumEk/M1KSe48Jo3RocgKhdgGjdHhuiaRhcGFyhaJhbq9Nb2xseSBNZXRlcm1haWSiYXXZKWh0dHA6Ly9sb2NhbGhvc3Q6NTAwMC9tb2xseWNvL3doby13ZS1hcmUvoW3EIItYc29Vmg8xftteXEfMZokX1EDK546h7UFeT4hQQFLZoXQBonVupVZMRFRSo2ZlZc0D6KJmdlGjZ2VuqnNhbmRuZXQtdjGiZ2jEIC/iF+bI4LU6UTgG4SIxyD10PS0/vNAEa93OC5SVRFn6omx2zQQ5pG5vdGXEK01vbGx5IEluYyBUZWxlbWV0cnkgU3VydmV5b3JzIGFuZCBQdXJ2ZXlvcnOjc25kxCDHZxhdCT2TxxxZlZ/H5mIku1s4ulDm3EmU6dYKXCWEB6R0eXBlpGFjZmc="
 }
 },
 "properties": {
 "TerminalAssetAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "The GNodeAlias of the TerminalAsset",
 "required": true
 },
 "TaOwnerAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "The Algorand address of the owner for the TerminalAsset",
 "required": true
 },
 "ValidatorAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "Address of the TaValidator",
 "description": "The Algorand address of the TaValidator who has validated the location, device type, and power metering of the TerminalAsset.",
 "required": true
 },
 "SignedInitialDaemonFundingTxn": {
 "type": "string",
 "format": "AlgoMsgPackEncoded",
 "title": "",
 "description": "Funding transaction for the TaDaemon account, signed by the TaOwner.",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "initial.tadeed.algo.optin.002",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "002",
 "required": true
 }
 },
 "axioms": {
 "Axiom1": {
 "title": "Is correct Multisig",
 "description": "Decoded SignedInitialDaemonFundingTxn must be a SignedTransaction signed by TaOwnerAddr."
 },
 "Axiom2": {
 "title": "TaDeed consistency",
 "description": "There is an ASA TaDeed created by and owned by the 2-sig MultiAccount [GnfAdminAddr, ValidatorAddr], where the TaDeed's AssetName is equal to the payload's TerminalAssetAlias."
 }
 }
}

InitialTadeedAlgoTransfer

{
 "gwapi": "001",
 "type_name": "initial.tadeed.algo.transfer",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "TaValidator sends to GNodeFactory after validating Transactive Device. Once the TaValidator has done the initial on-site inspection of the Transactive Device including its location and the type and quality of its power and energy metering, the TaValidator lets the GNodeFactory know by sending this message. Note the message also includes the lat/lon of the Transactive Device. On receiving and validating this message, the GNodeFactory will co-sign the transfer and send the TaDeed to the TaDaemon address. In addition, the GNodeFactory creates and sends a TaTradingRights certificate to the TaDaemon address. Only once the GNodeFactory has verified that the TaDaemon address owns the TaDeed and TaTradingRights will it change the GNodeStatus of the associated TerminalAsset from Pending to Active. [GNodeStatus](https://gridworks.readthedocs.io/en/latest/g-node-status.html) [TaDeed](https://gridworks.readthedocs.io/en/latest/ta-deed.html) [TaTradingRights](https://gridworks.readthedocs.io/en/latest/ta-trading-rights.html) [TaValidator](https://gridworks.readthedocs.io/en/latest/ta-validator.html) [TerminalAsset](https://gridworks.readthedocs.io/en/latest/terminal-asset.html) [Transactive Device](https://gridworks.readthedocs.io/en/latest/transactive-device.html)",
 "formats": {
 "AlgoAddressStringFormat": {
 "type": "string",
 "description": "String of length 32, characters are all base32 digits.",
 "example": "RNMHG32VTIHTC7W3LZOEPTDGREL5IQGK46HKD3KBLZHYQUCAKLMT4G5ALI"
 },
 "AlgoMsgPackEncoded": {
 "type": "string",
 "description": "Error is not thrown with algosdk.encoding.future_msg_decode(candidate)",
 "example": "gqRtc2lng6ZzdWJzaWeSgaJwa8Qgi1hzb1WaDzF+215cR8xmiRfUQMrnjqHtQV5PiFBAUtmConBrxCD8IT4Zu8vBAhRNsXoWF+2i6q2KyBZrPhmbDCKJD7rBBqFzxEAEp8UcTEJSyTmgw96/mCnNHKfhkdYMCD5jxWejHRmPCrR8U9z/FBVsoCGbjDTTk2L1k7n/eVlumEk/M1KSe48Jo3RocgKhdgGjdHhuiaRhcGFyhaJhbq9Nb2xseSBNZXRlcm1haWSiYXXZKWh0dHA6Ly9sb2NhbGhvc3Q6NTAwMC9tb2xseWNvL3doby13ZS1hcmUvoW3EIItYc29Vmg8xftteXEfMZokX1EDK546h7UFeT4hQQFLZoXQBonVupVZMRFRSo2ZlZc0D6KJmdlGjZ2VuqnNhbmRuZXQtdjGiZ2jEIC/iF+bI4LU6UTgG4SIxyD10PS0/vNAEa93OC5SVRFn6omx2zQQ5pG5vdGXEK01vbGx5IEluYyBUZWxlbWV0cnkgU3VydmV5b3JzIGFuZCBQdXJ2ZXlvcnOjc25kxCDHZxhdCT2TxxxZlZ/H5mIku1s4ulDm3EmU6dYKXCWEB6R0eXBlpGFjZmc="
 }
 },
 "properties": {
 "MicroLat": {
 "type": "integer",
 "title": "",
 "description": "The Latitude of the Transactive Device, times 10^6",
 "required": true
 },
 "MicroLon": {
 "type": "integer",
 "title": "",
 "description": "The Longitude of the Transactive Device, times 10^6",
 "required": true
 },
 "ValidatorAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "",
 "description": "The Algoand address for the TaValidator who validated the location, metering and type of the Transactive Device.",
 "required": true
 },
 "TaDaemonAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "",
 "description": "The Algorand address for the TaDaemon which will own the TaDeed and initially the TaTradingRights), as well as holding funds on behalf of the TaOwner.",
 "required": true
 },
 "TaOwnerAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "",
 "description": "The Algorand address of the entity owning the Transactive Device, and thus also the TerminalAsset",
 "required": true
 },
 "FirstDeedTransferMtx": {
 "type": "string",
 "format": "AlgoMsgPackEncoded",
 "title": "",
 "description": "The half-signed multi transaction for transferring the TaDeed to the TaDaemon.",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "initial.tadeed.algo.transfer.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "axioms": {
 "Axiom1": {
 "title": "Is correct Multisig",
 "description": "Decoded FirstDeedTransferMtx must have type MultisigTransaction from the 2-sig MultiAccount [GnfAdminAddr, ValidatorAddr].",
 "url": "https://gridworks.readthedocs.io/en/latest/g-node-factory.html#gnfadminaddr"
 },
 "Axiom2": {
 "title": "TaDaemon funded by TaOwner",
 "description": "The TaDaemonAddr was created with funding from the TaOwnerAddr, and has sufficient funding according to the GNodeFactory."
 }
 }
}

NewTadeedAlgoOptin

{
 "gwapi": "001",
 "type_name": "new.tadeed.algo.optin",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "",
 "formats": {
 "AlgoAddressStringFormat": {
 "type": "string",
 "description": "String of length 32, characters are all base32 digits.",
 "example": "RNMHG32VTIHTC7W3LZOEPTDGREL5IQGK46HKD3KBLZHYQUCAKLMT4G5ALI"
 },
 "AlgoMsgPackEncoded": {
 "type": "string",
 "description": "Error is not thrown with algosdk.encoding.future_msg_decode(candidate)",
 "example": "gqRtc2lng6ZzdWJzaWeSgaJwa8Qgi1hzb1WaDzF+215cR8xmiRfUQMrnjqHtQV5PiFBAUtmConBrxCD8IT4Zu8vBAhRNsXoWF+2i6q2KyBZrPhmbDCKJD7rBBqFzxEAEp8UcTEJSyTmgw96/mCnNHKfhkdYMCD5jxWejHRmPCrR8U9z/FBVsoCGbjDTTk2L1k7n/eVlumEk/M1KSe48Jo3RocgKhdgGjdHhuiaRhcGFyhaJhbq9Nb2xseSBNZXRlcm1haWSiYXXZKWh0dHA6Ly9sb2NhbGhvc3Q6NTAwMC9tb2xseWNvL3doby13ZS1hcmUvoW3EIItYc29Vmg8xftteXEfMZokX1EDK546h7UFeT4hQQFLZoXQBonVupVZMRFRSo2ZlZc0D6KJmdlGjZ2VuqnNhbmRuZXQtdjGiZ2jEIC/iF+bI4LU6UTgG4SIxyD10PS0/vNAEa93OC5SVRFn6omx2zQQ5pG5vdGXEK01vbGx5IEluYyBUZWxlbWV0cnkgU3VydmV5b3JzIGFuZCBQdXJ2ZXlvcnOjc25kxCDHZxhdCT2TxxxZlZ/H5mIku1s4ulDm3EmU6dYKXCWEB6R0eXBlpGFjZmc="
 }
 },
 "properties": {
 "NewTaDeedIdx": {
 "type": "integer",
 "title": "",
 "required": true
 },
 "OldTaDeedIdx": {
 "type": "integer",
 "title": "",
 "required": true
 },
 "TaDaemonAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "",
 "required": true
 },
 "ValidatorAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "",
 "required": true
 },
 "SignedTaDeedCreationTxn": {
 "type": "string",
 "format": "AlgoMsgPackEncoded",
 "title": "",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "new.tadeed.algo.optin.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 }
}

NewTadeedSend

{
 "gwapi": "001",
 "type_name": "new.tadeed.send",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "",
 "formats": {
 "AlgoAddressStringFormat": {
 "type": "string",
 "description": "String of length 32, characters are all base32 digits.",
 "example": "RNMHG32VTIHTC7W3LZOEPTDGREL5IQGK46HKD3KBLZHYQUCAKLMT4G5ALI"
 },
 "AlgoMsgPackEncoded": {
 "type": "string",
 "description": "Error is not thrown with algosdk.encoding.future_msg_decode(candidate)",
 "example": "gqRtc2lng6ZzdWJzaWeSgaJwa8Qgi1hzb1WaDzF+215cR8xmiRfUQMrnjqHtQV5PiFBAUtmConBrxCD8IT4Zu8vBAhRNsXoWF+2i6q2KyBZrPhmbDCKJD7rBBqFzxEAEp8UcTEJSyTmgw96/mCnNHKfhkdYMCD5jxWejHRmPCrR8U9z/FBVsoCGbjDTTk2L1k7n/eVlumEk/M1KSe48Jo3RocgKhdgGjdHhuiaRhcGFyhaJhbq9Nb2xseSBNZXRlcm1haWSiYXXZKWh0dHA6Ly9sb2NhbGhvc3Q6NTAwMC9tb2xseWNvL3doby13ZS1hcmUvoW3EIItYc29Vmg8xftteXEfMZokX1EDK546h7UFeT4hQQFLZoXQBonVupVZMRFRSo2ZlZc0D6KJmdlGjZ2VuqnNhbmRuZXQtdjGiZ2jEIC/iF+bI4LU6UTgG4SIxyD10PS0/vNAEa93OC5SVRFn6omx2zQQ5pG5vdGXEK01vbGx5IEluYyBUZWxlbWV0cnkgU3VydmV5b3JzIGFuZCBQdXJ2ZXlvcnOjc25kxCDHZxhdCT2TxxxZlZ/H5mIku1s4ulDm3EmU6dYKXCWEB6R0eXBlpGFjZmc="
 }
 },
 "properties": {
 "NewTaDeedIdx": {
 "type": "integer",
 "title": "",
 "required": true
 },
 "OldTaDeedIdx": {
 "type": "integer",
 "title": "",
 "required": true
 },
 "TaDaemonAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "",
 "required": true
 },
 "ValidatorAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "",
 "required": true
 },
 "SignedTadeedOptinTxn": {
 "type": "string",
 "format": "AlgoMsgPackEncoded",
 "title": "",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "new.tadeed.send.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 }
}

OldTadeedAlgoReturn

{
 "gwapi": "001",
 "type_name": "old.tadeed.algo.return",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "",
 "formats": {
 "AlgoAddressStringFormat": {
 "type": "string",
 "description": "String of length 32, characters are all base32 digits.",
 "example": "RNMHG32VTIHTC7W3LZOEPTDGREL5IQGK46HKD3KBLZHYQUCAKLMT4G5ALI"
 },
 "AlgoMsgPackEncoded": {
 "type": "string",
 "description": "Error is not thrown with algosdk.encoding.future_msg_decode(candidate)",
 "example": "gqRtc2lng6ZzdWJzaWeSgaJwa8Qgi1hzb1WaDzF+215cR8xmiRfUQMrnjqHtQV5PiFBAUtmConBrxCD8IT4Zu8vBAhRNsXoWF+2i6q2KyBZrPhmbDCKJD7rBBqFzxEAEp8UcTEJSyTmgw96/mCnNHKfhkdYMCD5jxWejHRmPCrR8U9z/FBVsoCGbjDTTk2L1k7n/eVlumEk/M1KSe48Jo3RocgKhdgGjdHhuiaRhcGFyhaJhbq9Nb2xseSBNZXRlcm1haWSiYXXZKWh0dHA6Ly9sb2NhbGhvc3Q6NTAwMC9tb2xseWNvL3doby13ZS1hcmUvoW3EIItYc29Vmg8xftteXEfMZokX1EDK546h7UFeT4hQQFLZoXQBonVupVZMRFRSo2ZlZc0D6KJmdlGjZ2VuqnNhbmRuZXQtdjGiZ2jEIC/iF+bI4LU6UTgG4SIxyD10PS0/vNAEa93OC5SVRFn6omx2zQQ5pG5vdGXEK01vbGx5IEluYyBUZWxlbWV0cnkgU3VydmV5b3JzIGFuZCBQdXJ2ZXlvcnOjc25kxCDHZxhdCT2TxxxZlZ/H5mIku1s4ulDm3EmU6dYKXCWEB6R0eXBlpGFjZmc="
 }
 },
 "properties": {
 "OldTaDeedIdx": {
 "type": "integer",
 "title": "",
 "required": true
 },
 "TaDaemonAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "",
 "required": true
 },
 "ValidatorAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "",
 "required": true
 },
 "SignedNewDeedTransferTxn": {
 "type": "string",
 "format": "AlgoMsgPackEncoded",
 "title": "",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "old.tadeed.algo.return.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 }
}

PauseTime

{
 "gwapi": "001",
 "type_name": "pause.time",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "",
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 },
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 }
 },
 "properties": {
 "FromGNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "FromGNodeInstanceId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "",
 "required": true
 },
 "ToGNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "pause.time.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 }
}

ResumeTime

{
 "gwapi": "001",
 "type_name": "resume.time",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "",
 "formats": {
 "UuidCanonicalTextual": {
 "type": "string",
 "description": "A string of hex words separated by hyphens of length 8-4-4-4-12.",
 "example": "652ba6b0-c3bf-4f06-8a80-6b9832d60a25"
 },
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 }
 },
 "properties": {
 "FromGNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "FromGNodeInstanceId": {
 "type": "string",
 "format": "UuidCanonicalTextual",
 "title": "",
 "required": true
 },
 "ToGNodeAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "resume.time.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 }
}

ScadaCertTransfer

{
 "gwapi": "001",
 "type_name": "scada.cert.transfer",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Scada Certificate Transfer. This is a payload designed to be sent from a SCADA device to the GNodeFactory after the SCADA has opted into its certificate.",
 "formats": {
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 },
 "AlgoMsgPackEncoded": {
 "type": "string",
 "description": "Error is not thrown with algosdk.encoding.future_msg_decode(candidate)",
 "example": "gqRtc2lng6ZzdWJzaWeSgaJwa8Qgi1hzb1WaDzF+215cR8xmiRfUQMrnjqHtQV5PiFBAUtmConBrxCD8IT4Zu8vBAhRNsXoWF+2i6q2KyBZrPhmbDCKJD7rBBqFzxEAEp8UcTEJSyTmgw96/mCnNHKfhkdYMCD5jxWejHRmPCrR8U9z/FBVsoCGbjDTTk2L1k7n/eVlumEk/M1KSe48Jo3RocgKhdgGjdHhuiaRhcGFyhaJhbq9Nb2xseSBNZXRlcm1haWSiYXXZKWh0dHA6Ly9sb2NhbGhvc3Q6NTAwMC9tb2xseWNvL3doby13ZS1hcmUvoW3EIItYc29Vmg8xftteXEfMZokX1EDK546h7UFeT4hQQFLZoXQBonVupVZMRFRSo2ZlZc0D6KJmdlGjZ2VuqnNhbmRuZXQtdjGiZ2jEIC/iF+bI4LU6UTgG4SIxyD10PS0/vNAEa93OC5SVRFn6omx2zQQ5pG5vdGXEK01vbGx5IEluYyBUZWxlbWV0cnkgU3VydmV5b3JzIGFuZCBQdXJ2ZXlvcnOjc25kxCDHZxhdCT2TxxxZlZ/H5mIku1s4ulDm3EmU6dYKXCWEB6R0eXBlpGFjZmc="
 }
 },
 "properties": {
 "TaAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "TerminalAsset Alias",
 "description": "GNodeAlias of the TerminalAsset for which the SCADA certificate is issued. The ScadaCert can be found from this.",
 "required": true
 },
 "SignedProof": {
 "type": "string",
 "format": "AlgoMsgPackEncoded",
 "title": "Signed Proof from the SCADA Actor",
 "description": "The Scada GNode has a ScadaAlgoAddr in the GNodeFactory database, and the identity of the SCADA actor can be verified by this.",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "scada.cert.transfer.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "axioms": {
 "Axiom1": {
 "title": "Scada is SignedProof signer",
 "description": "There is a Scada BaseGNode in the GNodeFactory whose alias is TaAlias + '.scada', and the ScadaAlgoAddr for that Scada BaseGNode is the public address of the SignedProof signer. The txn is the OptIn."
 }
 }
}

SlaEnter

{
 "gwapi": "001",
 "type_name": "sla.enter",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "",
 "formats": {
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 }
 },
 "properties": {
 "TerminalAssetAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "sla.enter.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 }
}

TadeedSpecsHack

{
 "gwapi": "001",
 "type_name": "tadeed.specs.hack",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "",
 "formats": {
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 }
 },
 "properties": {
 "TerminalAssetAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "MicroLat": {
 "type": "integer",
 "title": "",
 "required": true
 },
 "MicroLon": {
 "type": "integer",
 "title": "",
 "required": true
 },
 "DaemonPort": {
 "type": "integer",
 "title": "",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "tadeed.specs.hack.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 }
}

TatradingrightsAlgoCreate

{
 "gwapi": "001",
 "type_name": "tatradingrights.algo.create",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "",
 "properties": {
 "TypeName": {
 "type": "string",
 "value": "tatradingrights.algo.create.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 }
}

TavalidatorcertAlgoCreate

{
 "gwapi": "001",
 "type_name": "tavalidatorcert.algo.create",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Used for Step 1 of TaValidator certification. Meant to be sent from a pending TaValidator to the GNodeFactory (Gnf), to initiate the process of certifying the pending TaValidator.",
 "url": "https://gridworks.readthedocs.io/en/latest/ta-validator.html",
 "formats": {
 "AlgoAddressStringFormat": {
 "type": "string",
 "description": "String of length 32, characters are all base32 digits.",
 "example": "RNMHG32VTIHTC7W3LZOEPTDGREL5IQGK46HKD3KBLZHYQUCAKLMT4G5ALI"
 },
 "AlgoMsgPackEncoded": {
 "type": "string",
 "description": "Error is not thrown with algosdk.encoding.future_msg_decode(candidate)",
 "example": "gqRtc2lng6ZzdWJzaWeSgaJwa8Qgi1hzb1WaDzF+215cR8xmiRfUQMrnjqHtQV5PiFBAUtmConBrxCD8IT4Zu8vBAhRNsXoWF+2i6q2KyBZrPhmbDCKJD7rBBqFzxEAEp8UcTEJSyTmgw96/mCnNHKfhkdYMCD5jxWejHRmPCrR8U9z/FBVsoCGbjDTTk2L1k7n/eVlumEk/M1KSe48Jo3RocgKhdgGjdHhuiaRhcGFyhaJhbq9Nb2xseSBNZXRlcm1haWSiYXXZKWh0dHA6Ly9sb2NhbGhvc3Q6NTAwMC9tb2xseWNvL3doby13ZS1hcmUvoW3EIItYc29Vmg8xftteXEfMZokX1EDK546h7UFeT4hQQFLZoXQBonVupVZMRFRSo2ZlZc0D6KJmdlGjZ2VuqnNhbmRuZXQtdjGiZ2jEIC/iF+bI4LU6UTgG4SIxyD10PS0/vNAEa93OC5SVRFn6omx2zQQ5pG5vdGXEK01vbGx5IEluYyBUZWxlbWV0cnkgU3VydmV5b3JzIGFuZCBQdXJ2ZXlvcnOjc25kxCDHZxhdCT2TxxxZlZ/H5mIku1s4ulDm3EmU6dYKXCWEB6R0eXBlpGFjZmc="
 }
 },
 "properties": {
 "ValidatorAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "The address of the pending TaValidator",
 "required": true
 },
 "HalfSignedCertCreationMtx": {
 "type": "string",
 "format": "AlgoMsgPackEncoded",
 "title": "Algo multi-transaction for certificate creation, with 1 of 2 signatures",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "tavalidatorcert.algo.create.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "axioms": {
 "Axiom1": {
 "title": "Is correct Multisig",
 "description": "Decoded HalfSignedCertCreationMtx must have type MultisigTransaction from the 2-sig MultiAccount [GnfAdminAddr, ValidatorAddr], signed by ValidatorAddr.",
 "url": "https://gridworks.readthedocs.io/en/latest/g-node-factory.html#gnfadminaddr"
 },
 "Axiom2": {
 "title": "Is AssetConfigTxn",
 "description": "The transaction must have type AssetConfigTxn."
 },
 "Axiom3": {
 "title": "Is ValidatorCert",
 "description": "For the asset getting created: Total is 1, Decimals is 0, UnitName is VLDTR, Manager is GnfAdminAddr, AssetName is not blank.",
 "url": "https://gridworks.readthedocs.io/en/latest/ta-validator.html#tavalidator-certificate"
 },
 "Axiom5": {
 "title": "Uniqueness",
 "description": "There must not already be a TaValidatorCert belonging to the 2-sig [GnfAdminAddr, ValidatorAddr] address."
 }
 },
 "example": {
 "ValidatorAddr": "7QQT4GN3ZPAQEFCNWF5BMF7NULVK3CWICZVT4GM3BQRISD52YEDLWJ4MII",
 "HalfSignedCertCreationMtx": "gqRtc2lng6ZzdWJzaWeSgaJwa8Qgi1hzb1WaDzF+215cR8xmiRfUQMrnjqHtQV5PiFBAUtmConBrxCD8IT4Zu8vBAhRNsXoWF+2i6q2KyBZrPhmbDCKJD7rBBqFzxECeARrO2EeYKIqsObwggXge02aA+Lf5D/lXB23O98qsyuf7f9jqDu+WT2U/KB53CPR+XSUWGh5nonEUdp63TDIEo3RocgKhdgGjdHhuiaRhcGFyhKJhbq9Nb2xseSBNZXRlcm1haWShbcQgi1hzb1WaDzF+215cR8xmiRfUQMrnjqHtQV5PiFBAUtmhdAGidW6lVkxEVFKjZmVlzQPoomZ2A6NnZW6qc2FuZG5ldC12MaJnaMQgZGDSySH2HEYnRD3oWlUn77Xl6iBj3QBYmURoHXJQSRCibHbNA+ukbm90ZcQrTW9sbHkgSW5jIFRlbGVtZXRyeSBTdXJ2ZXlvcnMgYW5kIFB1cnZleW9yc6NzbmTEIMdnGF0JPZPHHFmVn8fmYiS7Wzi6UObcSZTp1gpcJYQHpHR5cGWkYWNmZw==",
 "TypeName": "tavalidatorcert.algo.create",
 "Version": "000"
 }
}

TavalidatorcertAlgoTransfer

{
 "gwapi": "001",
 "type_name": "tavalidatorcert.algo.transfer",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "Used for Step 2 of TaValidator certification. Meant to be sent from a pending TaValidator to the GNodeFactory (Gnf), so the Gnf will transfer its ValidatorCert to the pending TaValidator's Algorand address.",
 "url": "https://gridworks.readthedocs.io/en/latest/ta-validator.html",
 "formats": {
 "AlgoAddressStringFormat": {
 "type": "string",
 "description": "String of length 32, characters are all base32 digits.",
 "example": "RNMHG32VTIHTC7W3LZOEPTDGREL5IQGK46HKD3KBLZHYQUCAKLMT4G5ALI"
 },
 "AlgoMsgPackEncoded": {
 "type": "string",
 "description": "Error is not thrown with algosdk.encoding.future_msg_decode(candidate)",
 "example": "gqRtc2lng6ZzdWJzaWeSgaJwa8Qgi1hzb1WaDzF+215cR8xmiRfUQMrnjqHtQV5PiFBAUtmConBrxCD8IT4Zu8vBAhRNsXoWF+2i6q2KyBZrPhmbDCKJD7rBBqFzxEAEp8UcTEJSyTmgw96/mCnNHKfhkdYMCD5jxWejHRmPCrR8U9z/FBVsoCGbjDTTk2L1k7n/eVlumEk/M1KSe48Jo3RocgKhdgGjdHhuiaRhcGFyhaJhbq9Nb2xseSBNZXRlcm1haWSiYXXZKWh0dHA6Ly9sb2NhbGhvc3Q6NTAwMC9tb2xseWNvL3doby13ZS1hcmUvoW3EIItYc29Vmg8xftteXEfMZokX1EDK546h7UFeT4hQQFLZoXQBonVupVZMRFRSo2ZlZc0D6KJmdlGjZ2VuqnNhbmRuZXQtdjGiZ2jEIC/iF+bI4LU6UTgG4SIxyD10PS0/vNAEa93OC5SVRFn6omx2zQQ5pG5vdGXEK01vbGx5IEluYyBUZWxlbWV0cnkgU3VydmV5b3JzIGFuZCBQdXJ2ZXlvcnOjc25kxCDHZxhdCT2TxxxZlZ/H5mIku1s4ulDm3EmU6dYKXCWEB6R0eXBlpGFjZmc="
 }
 },
 "properties": {
 "ValidatorAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "The address of the pending TaValidator",
 "required": true
 },
 "HalfSignedCertTransferMtx": {
 "type": "string",
 "format": "AlgoMsgPackEncoded",
 "title": "Algo multi-transaction for certificate transfer, with 1 of 2 signatures",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "tavalidatorcert.algo.transfer.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 },
 "axioms": {
 "Axiom1": {
 "title": "Is correct Multisig",
 "description": "Decoded HalfSignedCertTransferMtx must have type MultisigTransaction from the 2-sig MultiAccount [GnfAdminAddr, ValidatorAddr], signed by the ValidatorAddr",
 "url": "https://gridworks.readthedocs.io/en/latest/g-node-factory.html#gnfadminaddr"
 },
 "Axiom2": {
 "title": "Transfers correct certificate",
 "description": "- The transaction must be the transfer of an Algorand Standard Asset -The sender must be the 2-sig Multi [GnfAdminAddr, TaValidatorAddr], which also created and owns the ASA - It must be getting sent to the ValidatorAddr -The ASA must have: - Total = 1 - UnitName=VLDITR - GnfAdminAddr as manage - AssetName not blank - The transfer amount must be 1",
 "url": "https://gridworks.readthedocs.io/en/latest/ta-validator.html#tavalidator-certificate"
 },
 "Axiom3": {
 "title": "TaValidator has opted in",
 "description": "ValidatorAddr must be opted into the transferring ASA."
 },
 "Axiom4": {
 "title": "TaValidator has sufficient Algos",
 "description": "ValidatorAddr must have enough Algos to meet the GNodeFactory criterion."
 }
 }
}

TerminalassetCertifyHack

{
 "gwapi": "001",
 "type_name": "terminalasset.certify.hack",
 "version": "000",
 "owner": "gridworks@gridworks-consulting.com",
 "description": "",
 "formats": {
 "LeftRightDot": {
 "type": "string",
 "description": "Lowercase alphanumeric words separated by periods, most significant word (on the left) starting with an alphabet character.",
 "example": "dw1.isone.me.freedom.apple"
 },
 "AlgoAddressStringFormat": {
 "type": "string",
 "description": "String of length 32, characters are all base32 digits.",
 "example": "RNMHG32VTIHTC7W3LZOEPTDGREL5IQGK46HKD3KBLZHYQUCAKLMT4G5ALI"
 }
 },
 "properties": {
 "TerminalAssetAlias": {
 "type": "string",
 "format": "LeftRightDot",
 "title": "",
 "required": true
 },
 "TaDaemonApiPort": {
 "type": "string",
 "title": "",
 "required": true
 },
 "TaDaemonApiFqdn": {
 "type": "string",
 "title": "",
 "required": true
 },
 "TaDaemonAddr": {
 "type": "string",
 "format": "AlgoAddressStringFormat",
 "title": "",
 "required": true
 },
 "TypeName": {
 "type": "string",
 "value": "terminalasset.certify.hack.000",
 "title": "The type name"
 },
 "Version": {
 "type": "string",
 "title": "The type version",
 "default": "000",
 "required": true
 }
 }
}

BaseGNodeGt

Python pydantic class corresponding to json type `base.g.node.gt`.

	
class gnf.types.BaseGNodeGt(*, GNodeId, Alias, Status, Role, GNodeRegistryAddr, PrevAlias=None, GpsPointId=None, OwnershipDeedId=None, OwnershipDeedValidatorAddr=None, OwnerAddr=None, DaemonAddr=None, TradingRightsId=None, ScadaAlgoAddr=None, ScadaCertId=None, TypeName='base.g.node.gt', Version='002')

	.

BaseGNode. Authority is GNodeFactory.

	Parameters:

	
	GNodeId (str) –

	Alias (str) –

	Status (GNodeStatus) –

	Role (CoreGNodeRole) –

	GNodeRegistryAddr (str) –

	PrevAlias (str | None) –

	GpsPointId (str | None) –

	OwnershipDeedId (int | None) –

	OwnershipDeedValidatorAddr (str | None) –

	OwnerAddr (str | None) –

	DaemonAddr (str | None) –

	TradingRightsId (int | None) –

	ScadaAlgoAddr (str | None) –

	ScadaCertId (int | None) –

	TypeName (Literal['base.g.node.gt']) –

	Version (str) –

	GNodeId:
	
	Description:

	Format: UuidCanonicalTextual

	Alias:
	
	Description:

	Format: LeftRightDot

	Status:
	
	Description:

	Role:
	
	Description:

	GNodeRegistryAddr:
	
	Description:

	Format: AlgoAddressStringFormat

	PrevAlias:
	
	Description:

	Format: LeftRightDot

	GpsPointId:
	
	Description:

	Format: UuidCanonicalTextual

	OwnershipDeedId:
	
	Description:

	OwnershipDeedValidatorAddr:
	
	Description:

	Format: AlgoAddressStringFormat

	OwnerAddr:
	
	Description:

	Format: AlgoAddressStringFormat

	DaemonAddr:
	
	Description:

	Format: AlgoAddressStringFormat

	TradingRightsId:
	
	Description:

	ScadaAlgoAddr:
	
	Description:

	Format: AlgoAddressStringFormat

	ScadaCertId:
	
	Description:

	
class gnf.types.base_g_node_gt.check_is_uuid_canonical_textual(v)

	UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Raises:

	ValueError – if not UuidCanonicalTextual format

	Parameters:

	v (str) –

	
class gnf.types.base_g_node_gt.check_is_left_right_dot(v)

	LeftRightDot format: Lowercase alphanumeric words separated by periods,
most significant word (on the left) starting with an alphabet character.

	Raises:

	ValueError – if not LeftRightDot format

	Parameters:

	v (str) –

	
class gnf.types.base_g_node_gt.check_is_algo_address_string_format(v)

	AlgoAddressStringFormat format: The public key of a private/public Ed25519
key pair, transformed into an Algorand address, by adding a 4-byte checksum
to the end of the public key and then encoding in base32.

	Raises:

	ValueError – if not AlgoAddressStringFormat format

	Parameters:

	v (str) –

	
class gnf.types.BaseGNodeGt_Maker(g_node_id, alias, status, role, g_node_registry_addr, prev_alias, gps_point_id, ownership_deed_id, ownership_deed_validator_addr, owner_addr, daemon_addr, trading_rights_id, scada_algo_addr, scada_cert_id)

	
	Parameters:

	
	g_node_id (str) –

	alias (str) –

	status (GNodeStatus) –

	role (CoreGNodeRole) –

	g_node_registry_addr (str) –

	prev_alias (str | None) –

	gps_point_id (str | None) –

	ownership_deed_id (int | None) –

	ownership_deed_validator_addr (str | None) –

	owner_addr (str | None) –

	daemon_addr (str | None) –

	trading_rights_id (int | None) –

	scada_algo_addr (str | None) –

	scada_cert_id (int | None) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (BaseGNodeGt) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	BaseGNodeGt

BasegnodeCtnCreate

Python pydantic class corresponding to json type `basegnode.ctn.create`.

	
class gnf.types.BasegnodeCtnCreate(*, FromGNodeAlias, FromGNodeInstanceId, CtnGNodeAlias, MicroLat, MicroLon, ChildAliasList, GNodeRegistryAddr, TypeName='basegnode.ctn.create', Version='000')

	
	Parameters:

	
	FromGNodeAlias (str) –

	FromGNodeInstanceId (str) –

	CtnGNodeAlias (str) –

	MicroLat (int) –

	MicroLon (int) –

	ChildAliasList (List[str]) –

	GNodeRegistryAddr (str) –

	TypeName (Literal['basegnode.ctn.create']) –

	Version (str) –

	FromGNodeAlias:
	
	Description:

	Format: LeftRightDot

	FromGNodeInstanceId:
	
	Description:

	Format: UuidCanonicalTextual

	CtnGNodeAlias:
	
	Description:

	Format: LeftRightDot

	MicroLat:
	
	Description:

	MicroLon:
	
	Description:

	ChildAliasList:
	
	Description:

	Format: LeftRightDot

	GNodeRegistryAddr:
	
	Description:

	Format: AlgoAddressStringFormat

	
class gnf.types.basegnode_ctn_create.check_is_uuid_canonical_textual(v)

	UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Raises:

	ValueError – if not UuidCanonicalTextual format

	Parameters:

	v (str) –

	
class gnf.types.basegnode_ctn_create.check_is_left_right_dot(v)

	LeftRightDot format: Lowercase alphanumeric words separated by periods,
most significant word (on the left) starting with an alphabet character.

	Raises:

	ValueError – if not LeftRightDot format

	Parameters:

	v (str) –

	
class gnf.types.basegnode_ctn_create.check_is_algo_address_string_format(v)

	AlgoAddressStringFormat format: The public key of a private/public Ed25519
key pair, transformed into an Algorand address, by adding a 4-byte checksum
to the end of the public key and then encoding in base32.

	Raises:

	ValueError – if not AlgoAddressStringFormat format

	Parameters:

	v (str) –

	
class gnf.types.BasegnodeCtnCreate_Maker(from_g_node_alias, from_g_node_instance_id, ctn_g_node_alias, micro_lat, micro_lon, child_alias_list, g_node_registry_addr)

	
	Parameters:

	
	from_g_node_alias (str) –

	from_g_node_instance_id (str) –

	ctn_g_node_alias (str) –

	micro_lat (int) –

	micro_lon (int) –

	child_alias_list (List[str]) –

	g_node_registry_addr (str) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (BasegnodeCtnCreate) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	BasegnodeCtnCreate

BasegnodeMarketmakerCreate

Python pydantic class corresponding to json type `basegnode.marketmaker.create`.

	
class gnf.types.BasegnodeMarketmakerCreate(*, TypeName='basegnode.marketmaker.create', Version='000')

	
	Parameters:

	
	TypeName (Literal['basegnode.marketmaker.create']) –

	Version (str) –

	
class gnf.types.basegnode_marketmaker_create.check_is_uuid_canonical_textual(v)

	UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Raises:

	ValueError – if not UuidCanonicalTextual format

	Parameters:

	v (str) –

	
class gnf.types.basegnode_marketmaker_create.check_is_left_right_dot(v)

	LeftRightDot format: Lowercase alphanumeric words separated by periods,
most significant word (on the left) starting with an alphabet character.

	Raises:

	ValueError – if not LeftRightDot format

	Parameters:

	v (str) –

	
class gnf.types.BasegnodeMarketmakerCreate_Maker

	
	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (BasegnodeMarketmakerCreate) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	BasegnodeMarketmakerCreate

BasegnodeOtherCreate

Python pydantic class corresponding to json type `basegnode.other.create`.

	
class gnf.types.BasegnodeOtherCreate(*, TypeName='basegnode.other.create', Version='000')

	
	Parameters:

	
	TypeName (Literal['basegnode.other.create']) –

	Version (str) –

	
class gnf.types.basegnode_other_create.check_is_uuid_canonical_textual(v)

	UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Raises:

	ValueError – if not UuidCanonicalTextual format

	Parameters:

	v (str) –

	
class gnf.types.basegnode_other_create.check_is_left_right_dot(v)

	LeftRightDot format: Lowercase alphanumeric words separated by periods,
most significant word (on the left) starting with an alphabet character.

	Raises:

	ValueError – if not LeftRightDot format

	Parameters:

	v (str) –

	
class gnf.types.BasegnodeOtherCreate_Maker

	
	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (BasegnodeOtherCreate) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	BasegnodeOtherCreate

BasegnodeScadaCreate

Python pydantic class corresponding to json type `basegnode.scada.create`.

	
class gnf.types.BasegnodeScadaCreate(*, TaAlias, ScadaAddr, TaDaemonAddr, GNodeRegistryAddr, SignedProof, TypeName='basegnode.scada.create', Version='000')

	Scada BaseGNode Creation.

This is a payload designed to be sent from a TaOwner to the GNodeFactory. The TaOwner creates a private Algorand key and puts it on the Scada Device that will sense and control their TerminalAsset. The public address is associated with the Scada GNode by the GNodeFactory.

	Parameters:

	
	TaAlias (str) –

	ScadaAddr (str) –

	TaDaemonAddr (str) –

	GNodeRegistryAddr (str) –

	SignedProof (str) –

	TypeName (Literal['basegnode.scada.create']) –

	Version (str) –

	
classmethod check_axiom_1(v)

	Axiom 1: TaOwner is SignedProof signer.
The TaDaemonAddr provides the public address for the TaOwner. This TaOwnerAddr must match
the signature on the SignedProof.

	Parameters:

	v (dict) –

	Return type:

	dict

	
classmethod check_axiom_2(v)

	Axiom 2: TaAlias matches TaDeed.
The TaDaemonAddr owns a TaDeed for the TaAlias.

	Parameters:

	v (dict) –

	Return type:

	dict

	TaAlias:
	
	Description: TerminalAsset Alias. GNodeAlias of the TerminalAsset that will be controlled by the new SCADA GNode. The SCADA GNodeAlias will have ‘.scada’ appended to this.

	Format: LeftRightDot

	ScadaAddr:
	
	Description: Algorand address for the SCADA. The TaOwner makes the corresponding private key, puts it on the SCADA device, and then sends this address to the GNodeFactory.

	Format: AlgoAddressStringFormat

	TaDaemonAddr:
	
	Description: Algorand address of the associated TaDaemon. The TaDaemonAddr will have the TaDeed, and can be used to verify the public address of the TaOwner

	Format: AlgoAddressStringFormat

	GNodeRegistryAddr:
	
	Description: GNodeRegistry Algorand address. The GNodeRegistry that contains Make/Model information about the SCADA and TerminalAsset

	Format: AlgoAddressStringFormat

	SignedProof:
	
	Description: Recent transaction signed by the TaOwner. These will be replaced by composite transactions in next gen code.

	Format: AlgoMsgPackEncoded

	
class gnf.types.basegnode_scada_create.check_is_left_right_dot(v)

	LeftRightDot format: Lowercase alphanumeric words separated by periods,
most significant word (on the left) starting with an alphabet character.

	Raises:

	ValueError – if not LeftRightDot format

	Parameters:

	v (str) –

	
class gnf.types.basegnode_scada_create.check_is_algo_address_string_format(v)

	AlgoAddressStringFormat format: The public key of a private/public Ed25519
key pair, transformed into an Algorand address, by adding a 4-byte checksum
to the end of the public key and then encoding in base32.

	Raises:

	ValueError – if not AlgoAddressStringFormat format

	Parameters:

	v (str) –

	
class gnf.types.basegnode_scada_create.check_is_algo_msg_pack_encoded(v)

	AlgoMSgPackEncoded format: the format of an transaction sent to
the Algorand blockchain.

	Raises:

	ValueError – if not AlgoMSgPackEncoded format

	Parameters:

	v (str) –

	
class gnf.types.BasegnodeScadaCreate_Maker(ta_alias, scada_addr, ta_daemon_addr, g_node_registry_addr, signed_proof)

	
	Parameters:

	
	ta_alias (str) –

	scada_addr (str) –

	ta_daemon_addr (str) –

	g_node_registry_addr (str) –

	signed_proof (str) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (BasegnodeScadaCreate) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	BasegnodeScadaCreate

BasegnodeTerminalassetCreate

Python pydantic class corresponding to json type `basegnode.terminalasset.create`.

	
class gnf.types.BasegnodeTerminalassetCreate(*, TaGNodeAlias, MicroLon, ValidatorAddr, TaOwnerAddr, MicroLat, GNodeRegistryAddr, FromGNodeInstanceId, FromGNodeAlias, TypeName='basegnode.terminalasset.create', Version='000')

	
	Parameters:

	
	TaGNodeAlias (str) –

	MicroLon (int) –

	ValidatorAddr (str) –

	TaOwnerAddr (str) –

	MicroLat (int) –

	GNodeRegistryAddr (str) –

	FromGNodeInstanceId (str) –

	FromGNodeAlias (str) –

	TypeName (Literal['basegnode.terminalasset.create']) –

	Version (str) –

	TaGNodeAlias:
	
	Description:

	Format: LeftRightDot

	MicroLon:
	
	Description:

	ValidatorAddr:
	
	Description:

	Format: AlgoAddressStringFormat

	TaOwnerAddr:
	
	Description:

	Format: AlgoAddressStringFormat

	MicroLat:
	
	Description:

	GNodeRegistryAddr:
	
	Description:

	Format: AlgoAddressStringFormat

	FromGNodeInstanceId:
	
	Description:

	Format: UuidCanonicalTextual

	FromGNodeAlias:
	
	Description:

	Format: LeftRightDot

	
class gnf.types.basegnode_terminalasset_create.check_is_uuid_canonical_textual(v)

	UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Raises:

	ValueError – if not UuidCanonicalTextual format

	Parameters:

	v (str) –

	
class gnf.types.basegnode_terminalasset_create.check_is_left_right_dot(v)

	LeftRightDot format: Lowercase alphanumeric words separated by periods,
most significant word (on the left) starting with an alphabet character.

	Raises:

	ValueError – if not LeftRightDot format

	Parameters:

	v (str) –

	
class gnf.types.basegnode_terminalasset_create.check_is_algo_address_string_format(v)

	AlgoAddressStringFormat format: The public key of a private/public Ed25519
key pair, transformed into an Algorand address, by adding a 4-byte checksum
to the end of the public key and then encoding in base32.

	Raises:

	ValueError – if not AlgoAddressStringFormat format

	Parameters:

	v (str) –

	
class gnf.types.BasegnodeTerminalassetCreate_Maker(ta_g_node_alias, micro_lon, validator_addr, ta_owner_addr, micro_lat, g_node_registry_addr, from_g_node_instance_id, from_g_node_alias)

	
	Parameters:

	
	ta_g_node_alias (str) –

	micro_lon (int) –

	validator_addr (str) –

	ta_owner_addr (str) –

	micro_lat (int) –

	g_node_registry_addr (str) –

	from_g_node_instance_id (str) –

	from_g_node_alias (str) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (BasegnodeTerminalassetCreate) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	BasegnodeTerminalassetCreate

BasegnodesBroadcast

Python pydantic class corresponding to json type `basegnodes.broadcast`.

	
class gnf.types.BasegnodesBroadcast(*, FromGNodeAlias, FromGNodeInstanceId, IncludeAllDescendants, TopGNode, DescendantGNodeList, TypeName='basegnodes.broadcast', Version='000')

	
	Parameters:

	
	FromGNodeAlias (str) –

	FromGNodeInstanceId (str) –

	IncludeAllDescendants (bool) –

	TopGNode (BaseGNodeGt) –

	DescendantGNodeList (List[BaseGNodeGt]) –

	TypeName (Literal['basegnodes.broadcast']) –

	Version (str) –

	FromGNodeAlias:
	
	Description:

	Format: LeftRightDot

	FromGNodeInstanceId:
	
	Description:

	Format: UuidCanonicalTextual

	IncludeAllDescendants:
	
	Description:

	TopGNode:
	
	Description:

	DescendantGNodeList:
	
	Description:

	
class gnf.types.basegnodes_broadcast.check_is_uuid_canonical_textual(v)

	UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Raises:

	ValueError – if not UuidCanonicalTextual format

	Parameters:

	v (str) –

	
class gnf.types.basegnodes_broadcast.check_is_left_right_dot(v)

	LeftRightDot format: Lowercase alphanumeric words separated by periods,
most significant word (on the left) starting with an alphabet character.

	Raises:

	ValueError – if not LeftRightDot format

	Parameters:

	v (str) –

	
class gnf.types.BasegnodesBroadcast_Maker(from_g_node_alias, from_g_node_instance_id, include_all_descendants, top_g_node, descendant_g_node_list)

	
	Parameters:

	
	from_g_node_alias (str) –

	from_g_node_instance_id (str) –

	include_all_descendants (bool) –

	top_g_node (BaseGNodeGt) –

	descendant_g_node_list (List[BaseGNodeGt]) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (BasegnodesBroadcast) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	BasegnodesBroadcast

BasegnodesGet

Python pydantic class corresponding to json type `basegnodes.get`.

	
class gnf.types.BasegnodesGet(*, TopGNodeAlias, IncludeAllDescendants, FromGNodeAlias, FromGNodeInstanceId, TypeName='basegnodes.get', Version='000')

	
	Parameters:

	
	TopGNodeAlias (str) –

	IncludeAllDescendants (bool) –

	FromGNodeAlias (str) –

	FromGNodeInstanceId (str) –

	TypeName (Literal['basegnodes.get']) –

	Version (str) –

	TopGNodeAlias:
	
	Description:

	Format: LeftRightDot

	IncludeAllDescendants:
	
	Description:

	FromGNodeAlias:
	
	Description:

	Format: LeftRightDot

	FromGNodeInstanceId:
	
	Description:

	Format: UuidCanonicalTextual

	
class gnf.types.basegnodes_get.check_is_uuid_canonical_textual(v)

	UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Raises:

	ValueError – if not UuidCanonicalTextual format

	Parameters:

	v (str) –

	
class gnf.types.basegnodes_get.check_is_left_right_dot(v)

	LeftRightDot format: Lowercase alphanumeric words separated by periods,
most significant word (on the left) starting with an alphabet character.

	Raises:

	ValueError – if not LeftRightDot format

	Parameters:

	v (str) –

	
class gnf.types.BasegnodesGet_Maker(top_g_node_alias, include_all_descendants, from_g_node_alias, from_g_node_instance_id)

	
	Parameters:

	
	top_g_node_alias (str) –

	include_all_descendants (bool) –

	from_g_node_alias (str) –

	from_g_node_instance_id (str) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (BasegnodesGet) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	BasegnodesGet

DebugTcReinitializeTime

Python pydantic class corresponding to json type `debug.tc.reinitialize.time`.

	
class gnf.types.DebugTcReinitializeTime(*, ToGNodeAlias, FromGNodeInstanceId, FromGNodeAlias, TypeName='debug.tc.reinitialize.time', Version='000')

	
	Parameters:

	
	ToGNodeAlias (str) –

	FromGNodeInstanceId (str) –

	FromGNodeAlias (str) –

	TypeName (Literal['debug.tc.reinitialize.time']) –

	Version (str) –

	ToGNodeAlias:
	
	Description:

	Format: LeftRightDot

	FromGNodeInstanceId:
	
	Description:

	Format: UuidCanonicalTextual

	FromGNodeAlias:
	
	Description:

	Format: LeftRightDot

	
class gnf.types.debug_tc_reinitialize_time.check_is_uuid_canonical_textual(v)

	UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Raises:

	ValueError – if not UuidCanonicalTextual format

	Parameters:

	v (str) –

	
class gnf.types.debug_tc_reinitialize_time.check_is_left_right_dot(v)

	LeftRightDot format: Lowercase alphanumeric words separated by periods,
most significant word (on the left) starting with an alphabet character.

	Raises:

	ValueError – if not LeftRightDot format

	Parameters:

	v (str) –

	
class gnf.types.DebugTcReinitializeTime_Maker(to_g_node_alias, from_g_node_instance_id, from_g_node_alias)

	
	Parameters:

	
	to_g_node_alias (str) –

	from_g_node_instance_id (str) –

	from_g_node_alias (str) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (DebugTcReinitializeTime) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	DebugTcReinitializeTime

DiscoverycertAlgoCreate

Python pydantic class corresponding to json type `discoverycert.algo.create`.

	
class gnf.types.DiscoverycertAlgoCreate(*, GNodeAlias, Role, OldChildAliasList, DiscovererAddr, SupportingMaterialHash, MicroLat=None, MicroLon=None, TypeName='discoverycert.algo.create', Version='000')

	
	Parameters:

	
	GNodeAlias (str) –

	Role (CoreGNodeRole) –

	OldChildAliasList (List[str]) –

	DiscovererAddr (str) –

	SupportingMaterialHash (str) –

	MicroLat (int | None) –

	MicroLon (int | None) –

	TypeName (Literal['discoverycert.algo.create']) –

	Version (str) –

	GNodeAlias:
	
	Description:

	Format: LeftRightDot

	Role:
	
	Description:

	OldChildAliasList:
	
	Description:

	Format: LeftRightDot

	DiscovererAddr:
	
	Description:

	Format: AlgoAddressStringFormat

	SupportingMaterialHash:
	
	Description:

	MicroLat:
	
	Description:

	MicroLon:
	
	Description:

	
class gnf.types.discoverycert_algo_create.check_is_left_right_dot(v)

	LeftRightDot format: Lowercase alphanumeric words separated by periods,
most significant word (on the left) starting with an alphabet character.

	Raises:

	ValueError – if not LeftRightDot format

	Parameters:

	v (str) –

	
class gnf.types.discoverycert_algo_create.check_is_algo_address_string_format(v)

	AlgoAddressStringFormat format: The public key of a private/public Ed25519
key pair, transformed into an Algorand address, by adding a 4-byte checksum
to the end of the public key and then encoding in base32.

	Raises:

	ValueError – if not AlgoAddressStringFormat format

	Parameters:

	v (str) –

	
class gnf.types.DiscoverycertAlgoCreate_Maker(g_node_alias, role, old_child_alias_list, discoverer_addr, supporting_material_hash, micro_lat, micro_lon)

	
	Parameters:

	
	g_node_alias (str) –

	role (CoreGNodeRole) –

	old_child_alias_list (List[str]) –

	discoverer_addr (str) –

	supporting_material_hash (str) –

	micro_lat (int | None) –

	micro_lon (int | None) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (DiscoverycertAlgoCreate) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	DiscoverycertAlgoCreate

DiscoverycertAlgoTransfer

Python pydantic class corresponding to json type `discoverycert.algo.transfer`.

	
class gnf.types.DiscoverycertAlgoTransfer(*, GNodeAlias, DiscovererAddr, TypeName='discoverycert.algo.transfer', Version='000')

	
	Parameters:

	
	GNodeAlias (str) –

	DiscovererAddr (str) –

	TypeName (Literal['discoverycert.algo.transfer']) –

	Version (str) –

	GNodeAlias:
	
	Description:

	Format: LeftRightDot

	DiscovererAddr:
	
	Description:

	Format: AlgoAddressStringFormat

	
class gnf.types.discoverycert_algo_transfer.check_is_left_right_dot(v)

	LeftRightDot format: Lowercase alphanumeric words separated by periods,
most significant word (on the left) starting with an alphabet character.

	Raises:

	ValueError – if not LeftRightDot format

	Parameters:

	v (str) –

	
class gnf.types.discoverycert_algo_transfer.check_is_algo_address_string_format(v)

	AlgoAddressStringFormat format: The public key of a private/public Ed25519
key pair, transformed into an Algorand address, by adding a 4-byte checksum
to the end of the public key and then encoding in base32.

	Raises:

	ValueError – if not AlgoAddressStringFormat format

	Parameters:

	v (str) –

	
class gnf.types.DiscoverycertAlgoTransfer_Maker(g_node_alias, discoverer_addr)

	
	Parameters:

	
	g_node_alias (str) –

	discoverer_addr (str) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (DiscoverycertAlgoTransfer) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	DiscoverycertAlgoTransfer

GwCertId

Python pydantic class corresponding to json type `gw.cert.id`.

	
class gnf.types.GwCertId(*, Type, Idx=None, Addr=None, TypeName='gw.cert.id', Version='000')

	Clarifies whether cert id is an Algorand Standard Asset or SmartSig

	Parameters:

	
	Type (AlgoCertType) –

	Idx (int | None) –

	Addr (str | None) –

	TypeName (Literal['gw.cert.id']) –

	Version (str) –

	
classmethod check_axiom_1(v)

	Axiom 1: Cert type consistency.
If Type is ASA, then Id exists and Addr does not. Otherwise, Addr exists
and Id does not.

	Parameters:

	v (dict) –

	Return type:

	dict

	Type:
	
	Description:

	Idx:
	
	Description: ASA Index

	Addr:
	
	Description: Algorand Smart Signature Address

	Format: AlgoAddressStringFormat

	
class gnf.types.gw_cert_id.check_is_algo_address_string_format(v)

	AlgoAddressStringFormat format: The public key of a private/public Ed25519
key pair, transformed into an Algorand address, by adding a 4-byte checksum
to the end of the public key and then encoding in base32.

	Raises:

	ValueError – if not AlgoAddressStringFormat format

	Parameters:

	v (str) –

	
class gnf.types.GwCertId_Maker(type, idx, addr)

	
	Parameters:

	
	type (AlgoCertType) –

	idx (int | None) –

	addr (str | None) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (GwCertId) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	GwCertId

HeartbeatA

Python pydantic class corresponding to json type `heartbeat.a`.

	
class gnf.types.HeartbeatA(*, MyHex='0', YourLastHex='0', TypeName='heartbeat.a', Version='100')

	Used to check that an actor can both send and receive messages.

Payload for direct messages sent back and forth between actors,
for example a Supervisor and one of its subordinates.

[More info](https://gridworks.readthedocs.io/en/latest/g-node-instance.html).

	Parameters:

	
	MyHex (str) –

	YourLastHex (str) –

	TypeName (Literal['heartbeat.a']) –

	Version (str) –

	MyHex:
	
	Description: Hex character getting sent

	Format: HexChar

	YourLastHex:
	
	Description: Last hex character received from heartbeat partner

	Format: HexChar

	
class gnf.types.heartbeat_a.check_is_hex_char(v)

	HexChar format: single-char string in ‘0123456789abcdefABCDEF’

	Raises:

	ValueError – if not HexChar format

	Parameters:

	v (str) –

	
class gnf.types.HeartbeatA_Maker(my_hex, your_last_hex)

	
	Parameters:

	
	my_hex (str) –

	your_last_hex (str) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (HeartbeatA) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	HeartbeatA

InitialTadeedAlgoCreate

Python pydantic class corresponding to json type `initial.tadeed.algo.create`.

	
class gnf.types.InitialTadeedAlgoCreate(*, ValidatorAddr, HalfSignedDeedCreationMtx, TypeName='initial.tadeed.algo.create', Version='000')

	TaValidator sends to GNodeFactory to complete creation of an initial TaDeed.

If this message is valid, the GNodeFactory co-signs and submits the TaDeed creation. In addition, the
GnodeFactory creates a TerminalAsset with GNodeStatus pending. For more information:
[TaDeed](https://gridworks.readthedocs.io/en/latest/ta-deed.html)
[TaValidator](https://gridworks.readthedocs.io/en/latest/ta-validator.html)

	Parameters:

	
	ValidatorAddr (str) –

	HalfSignedDeedCreationMtx (str) –

	TypeName (Literal['initial.tadeed.algo.create']) –

	Version (str) –

	
classmethod check_axiom_1(v)

	Axiom 1: Is correct Multisig.
Decoded HalfSignedDeedCreationMtx must have type MultisigTransaction from the
2-sig MultiAccount [GnfAdminAddr, ValidatorAddr].
[More info](https://gridworks.readthedocs.io/en/latest/g-node-factory.html#gnfadminaddr)

	Parameters:

	v (dict) –

	Return type:

	dict

	
classmethod check_axiom_2(v)

	Axiom 2: Creates Initial ASA TaDeed.
The transaction must create an Algorand Standard Asset

	Total is 1

	UnitName is TADEED

	Manager is GnfAdminAddr

	
	AssetName has the following characteristics:
	
	length <= 32 characters

	LeftRightDot format

	final word is ‘.ta’

[More info](https://gridworks.readthedocs.io/en/latest/ta-deed.html#asa-tadeed-specs)

	Parameters:

	v (dict) –

	Return type:

	dict

	
classmethod check_axiom_3(v)

	Axiom 3: Mtx signed by TaValidator.

	Parameters:

	v (dict) –

	Return type:

	dict

	ValidatorAddr:
	
	Description: Address of the TaValidator. The Algorand address of the TaValidator who is going to validate the location, device type, and power metering of the TerminalAsset.

	Format: AlgoAddressStringFormat

	HalfSignedDeedCreationMtx:
	
	Description: Algo mulit-transaction for TaDeed creation

	Format: AlgoMsgPackEncoded

	
class gnf.types.initial_tadeed_algo_create.check_is_algo_address_string_format(v)

	AlgoAddressStringFormat format: The public key of a private/public Ed25519
key pair, transformed into an Algorand address, by adding a 4-byte checksum
to the end of the public key and then encoding in base32.

	Raises:

	ValueError – if not AlgoAddressStringFormat format

	Parameters:

	v (str) –

	
class gnf.types.initial_tadeed_algo_create.check_is_algo_msg_pack_encoded(v)

	AlgoMSgPackEncoded format: the format of an transaction sent to
the Algorand blockchain.

	Raises:

	ValueError – if not AlgoMSgPackEncoded format

	Parameters:

	v (str) –

	
class gnf.types.InitialTadeedAlgoCreate_Maker(validator_addr, half_signed_deed_creation_mtx)

	
	Parameters:

	
	validator_addr (str) –

	half_signed_deed_creation_mtx (str) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (InitialTadeedAlgoCreate) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	InitialTadeedAlgoCreate

InitialTadeedAlgoOptin

Python pydantic class corresponding to json type `initial.tadeed.algo.optin`.

	
class gnf.types.InitialTadeedAlgoOptin(*, TerminalAssetAlias, TaOwnerAddr, ValidatorAddr, SignedInitialDaemonFundingTxn, TypeName='initial.tadeed.algo.optin', Version='002')

	Received by TaDaemon so that it can opt into intial TaDeed.

The TaDaemon must opt into the TaDeed before receiving it. This message prompts that action.

	Parameters:

	
	TerminalAssetAlias (str) –

	TaOwnerAddr (str) –

	ValidatorAddr (str) –

	SignedInitialDaemonFundingTxn (str) –

	TypeName (Literal['initial.tadeed.algo.optin']) –

	Version (str) –

	
classmethod check_axiom_1(v)

	Axiom 1: Is correct Multisig.
Decoded SignedInitialDaemonFundingTxn must be a SignedTransaction signed by TaOwnerAddr.

	Parameters:

	v (dict) –

	Return type:

	dict

	
classmethod check_axiom_2(v)

	Axiom 2: TaDeed consistency.
There is an ASA TaDeed created by and owned by the 2-sig MultiAccount [GnfAdminAddr, ValidatorAddr],
where the TaDeed’s AssetName is equal to the payload’s TerminalAssetAlias.

	Parameters:

	v (dict) –

	Return type:

	dict

	TerminalAssetAlias:
	
	Description: The GNodeAlias of the TerminalAsset

	Format: LeftRightDot

	TaOwnerAddr:
	
	Description: The Algorand address of the owner for the TerminalAsset

	Format: AlgoAddressStringFormat

	ValidatorAddr:
	
	Description: Address of the TaValidator. The Algorand address of the TaValidator who has validated the location, device type, and power metering of the TerminalAsset.

	Format: AlgoAddressStringFormat

	SignedInitialDaemonFundingTxn:
	
	Description: . Funding transaction for the TaDaemon account, signed by the TaOwner.

	Format: AlgoMsgPackEncoded

	
class gnf.types.initial_tadeed_algo_optin.check_is_left_right_dot(v)

	LeftRightDot format: Lowercase alphanumeric words separated by periods,
most significant word (on the left) starting with an alphabet character.

	Raises:

	ValueError – if not LeftRightDot format

	Parameters:

	v (str) –

	
class gnf.types.initial_tadeed_algo_optin.check_is_algo_address_string_format(v)

	AlgoAddressStringFormat format: The public key of a private/public Ed25519
key pair, transformed into an Algorand address, by adding a 4-byte checksum
to the end of the public key and then encoding in base32.

	Raises:

	ValueError – if not AlgoAddressStringFormat format

	Parameters:

	v (str) –

	
class gnf.types.initial_tadeed_algo_optin.check_is_algo_msg_pack_encoded(v)

	AlgoMSgPackEncoded format: the format of an transaction sent to
the Algorand blockchain.

	Raises:

	ValueError – if not AlgoMSgPackEncoded format

	Parameters:

	v (str) –

	
class gnf.types.InitialTadeedAlgoOptin_Maker(terminal_asset_alias, ta_owner_addr, validator_addr, signed_initial_daemon_funding_txn)

	
	Parameters:

	
	terminal_asset_alias (str) –

	ta_owner_addr (str) –

	validator_addr (str) –

	signed_initial_daemon_funding_txn (str) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (InitialTadeedAlgoOptin) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	InitialTadeedAlgoOptin

InitialTadeedAlgoTransfer

Python pydantic class corresponding to json type `initial.tadeed.algo.transfer`.

	
class gnf.types.InitialTadeedAlgoTransfer(*, MicroLat, MicroLon, ValidatorAddr, TaDaemonAddr, TaOwnerAddr, FirstDeedTransferMtx, TypeName='initial.tadeed.algo.transfer', Version='000')

	TaValidator sends to GNodeFactory after validating Transactive Device.

Once the TaValidator has done the initial on-site inspection of the Transactive
Device including its location and the type and quality of its power and energy
metering, the TaValidator lets the GNodeFactory know by sending this message.
Note the message also includes the lat/lon of the Transactive Device. On
receiving and validating this message, the GNodeFactory will co-sign the
transfer and send the TaDeed to the TaDaemon address. In addition, the
GNodeFactory creates and sends a TaTradingRights certificate to the
TaDaemon address. Only once the GNodeFactory has verified that the
TaDaemon address owns the TaDeed and TaTradingRights will it change
the GNodeStatus of the associated TerminalAsset from Pending to Active.
[GNodeStatus](https://gridworks.readthedocs.io/en/latest/g-node-status.html)
[TaDeed](https://gridworks.readthedocs.io/en/latest/ta-deed.html)
[TaTradingRights](https://gridworks.readthedocs.io/en/latest/ta-trading-rights.html)
[TaValidator](https://gridworks.readthedocs.io/en/latest/ta-validator.html)
[TerminalAsset](https://gridworks.readthedocs.io/en/latest/terminal-asset.html)
[Transactive Device](https://gridworks.readthedocs.io/en/latest/transactive-device.html)

	Parameters:

	
	MicroLat (int) –

	MicroLon (int) –

	ValidatorAddr (str) –

	TaDaemonAddr (str) –

	TaOwnerAddr (str) –

	FirstDeedTransferMtx (str) –

	TypeName (Literal['initial.tadeed.algo.transfer']) –

	Version (str) –

	
classmethod check_axiom_1(v)

	Axiom 1: Is correct Multisig.
Decoded FirstDeedTransferMtx must have type MultisigTransaction from the
2-sig MultiAccount [GnfAdminAddr, ValidatorAddr].
[More info](https://gridworks.readthedocs.io/en/latest/g-node-factory.html#gnfadminaddr)

	Parameters:

	v (dict) –

	Return type:

	dict

	
classmethod check_axiom_2(v)

	Axiom 2: TaDaemon funded by TaOwner.
The TaDaemonAddr was created with funding from the TaOwnerAddr, and has sufficient funding according to the GNodeFactory.

	Parameters:

	v (dict) –

	Return type:

	dict

	MicroLat:
	
	Description: . The Latitude of the Transactive Device, times 10^6

	MicroLon:
	
	Description: . The Longitude of the Transactive Device, times 10^6

	ValidatorAddr:
	
	
	Description: . The Algoand address for the TaValidator who validated the location,
	metering and type of the Transactive Device.

	Format: AlgoAddressStringFormat

	TaDaemonAddr:
	
	
	Description: . The Algorand address for the TaDaemon which will own the TaDeed
	
and initially the TaTradingRights), as well as holding funds on

behalf of the TaOwner.

	Format: AlgoAddressStringFormat

	TaOwnerAddr:
	
	
	Description: . The Algorand address of the entity owning the Transactive Device, and
	thus also the TerminalAsset

	Format: AlgoAddressStringFormat

	FirstDeedTransferMtx:
	
	
	Description: . The half-signed multi transaction for transferring the TaDeed to the
	TaDaemon.

	Format: AlgoMsgPackEncoded

	
class gnf.types.initial_tadeed_algo_transfer.check_is_algo_address_string_format(v)

	AlgoAddressStringFormat format: The public key of a private/public Ed25519
key pair, transformed into an Algorand address, by adding a 4-byte checksum
to the end of the public key and then encoding in base32.

	Raises:

	ValueError – if not AlgoAddressStringFormat format

	Parameters:

	v (str) –

	
class gnf.types.initial_tadeed_algo_transfer.check_is_algo_msg_pack_encoded(v)

	AlgoMSgPackEncoded format: the format of an transaction sent to
the Algorand blockchain.

	Raises:

	ValueError – if not AlgoMSgPackEncoded format

	Parameters:

	v (str) –

	
class gnf.types.InitialTadeedAlgoTransfer_Maker(micro_lat, micro_lon, validator_addr, ta_daemon_addr, ta_owner_addr, first_deed_transfer_mtx)

	
	Parameters:

	
	micro_lat (int) –

	micro_lon (int) –

	validator_addr (str) –

	ta_daemon_addr (str) –

	ta_owner_addr (str) –

	first_deed_transfer_mtx (str) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (InitialTadeedAlgoTransfer) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	InitialTadeedAlgoTransfer

NewTadeedAlgoOptin

Python pydantic class corresponding to json type `new.tadeed.algo.optin`.

	
class gnf.types.NewTadeedAlgoOptin(*, NewTaDeedIdx, OldTaDeedIdx, TaDaemonAddr, ValidatorAddr, SignedTaDeedCreationTxn, TypeName='new.tadeed.algo.optin', Version='000')

	
	Parameters:

	
	NewTaDeedIdx (int) –

	OldTaDeedIdx (int) –

	TaDaemonAddr (str) –

	ValidatorAddr (str) –

	SignedTaDeedCreationTxn (str) –

	TypeName (Literal['new.tadeed.algo.optin']) –

	Version (str) –

	NewTaDeedIdx:
	
	Description:

	OldTaDeedIdx:
	
	Description:

	TaDaemonAddr:
	
	Description:

	Format: AlgoAddressStringFormat

	ValidatorAddr:
	
	Description:

	Format: AlgoAddressStringFormat

	SignedTaDeedCreationTxn:
	
	Description:

	Format: AlgoMsgPackEncoded

	
class gnf.types.new_tadeed_algo_optin.check_is_algo_address_string_format(v)

	AlgoAddressStringFormat format: The public key of a private/public Ed25519
key pair, transformed into an Algorand address, by adding a 4-byte checksum
to the end of the public key and then encoding in base32.

	Raises:

	ValueError – if not AlgoAddressStringFormat format

	Parameters:

	v (str) –

	
class gnf.types.new_tadeed_algo_optin.check_is_algo_msg_pack_encoded(v)

	AlgoMSgPackEncoded format: the format of an transaction sent to
the Algorand blockchain.

	Raises:

	ValueError – if not AlgoMSgPackEncoded format

	Parameters:

	v (str) –

	
class gnf.types.NewTadeedAlgoOptin_Maker(new_ta_deed_idx, old_ta_deed_idx, ta_daemon_addr, validator_addr, signed_ta_deed_creation_txn)

	
	Parameters:

	
	new_ta_deed_idx (int) –

	old_ta_deed_idx (int) –

	ta_daemon_addr (str) –

	validator_addr (str) –

	signed_ta_deed_creation_txn (str) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (NewTadeedAlgoOptin) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	NewTadeedAlgoOptin

NewTadeedSend

Python pydantic class corresponding to json type `new.tadeed.send`.

	
class gnf.types.NewTadeedSend(*, NewTaDeedIdx, OldTaDeedIdx, TaDaemonAddr, ValidatorAddr, SignedTadeedOptinTxn, TypeName='new.tadeed.send', Version='000')

	
	Parameters:

	
	NewTaDeedIdx (int) –

	OldTaDeedIdx (int) –

	TaDaemonAddr (str) –

	ValidatorAddr (str) –

	SignedTadeedOptinTxn (str) –

	TypeName (Literal['new.tadeed.send']) –

	Version (str) –

	NewTaDeedIdx:
	
	Description:

	OldTaDeedIdx:
	
	Description:

	TaDaemonAddr:
	
	Description:

	Format: AlgoAddressStringFormat

	ValidatorAddr:
	
	Description:

	Format: AlgoAddressStringFormat

	SignedTadeedOptinTxn:
	
	Description:

	Format: AlgoMsgPackEncoded

	
class gnf.types.new_tadeed_send.check_is_algo_address_string_format(v)

	AlgoAddressStringFormat format: The public key of a private/public Ed25519
key pair, transformed into an Algorand address, by adding a 4-byte checksum
to the end of the public key and then encoding in base32.

	Raises:

	ValueError – if not AlgoAddressStringFormat format

	Parameters:

	v (str) –

	
class gnf.types.new_tadeed_send.check_is_algo_msg_pack_encoded(v)

	AlgoMSgPackEncoded format: the format of an transaction sent to
the Algorand blockchain.

	Raises:

	ValueError – if not AlgoMSgPackEncoded format

	Parameters:

	v (str) –

	
class gnf.types.NewTadeedSend_Maker(new_ta_deed_idx, old_ta_deed_idx, ta_daemon_addr, validator_addr, signed_tadeed_optin_txn)

	
	Parameters:

	
	new_ta_deed_idx (int) –

	old_ta_deed_idx (int) –

	ta_daemon_addr (str) –

	validator_addr (str) –

	signed_tadeed_optin_txn (str) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (NewTadeedSend) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	NewTadeedSend

OldTadeedAlgoReturn

Python pydantic class corresponding to json type `old.tadeed.algo.return`.

	
class gnf.types.OldTadeedAlgoReturn(*, OldTaDeedIdx, TaDaemonAddr, ValidatorAddr, SignedNewDeedTransferTxn, TypeName='old.tadeed.algo.return', Version='000')

	
	Parameters:

	
	OldTaDeedIdx (int) –

	TaDaemonAddr (str) –

	ValidatorAddr (str) –

	SignedNewDeedTransferTxn (str) –

	TypeName (Literal['old.tadeed.algo.return']) –

	Version (str) –

	OldTaDeedIdx:
	
	Description:

	TaDaemonAddr:
	
	Description:

	Format: AlgoAddressStringFormat

	ValidatorAddr:
	
	Description:

	Format: AlgoAddressStringFormat

	SignedNewDeedTransferTxn:
	
	Description:

	Format: AlgoMsgPackEncoded

	
class gnf.types.old_tadeed_algo_return.check_is_algo_address_string_format(v)

	AlgoAddressStringFormat format: The public key of a private/public Ed25519
key pair, transformed into an Algorand address, by adding a 4-byte checksum
to the end of the public key and then encoding in base32.

	Raises:

	ValueError – if not AlgoAddressStringFormat format

	Parameters:

	v (str) –

	
class gnf.types.old_tadeed_algo_return.check_is_algo_msg_pack_encoded(v)

	AlgoMSgPackEncoded format: the format of an transaction sent to
the Algorand blockchain.

	Raises:

	ValueError – if not AlgoMSgPackEncoded format

	Parameters:

	v (str) –

	
class gnf.types.OldTadeedAlgoReturn_Maker(old_ta_deed_idx, ta_daemon_addr, validator_addr, signed_new_deed_transfer_txn)

	
	Parameters:

	
	old_ta_deed_idx (int) –

	ta_daemon_addr (str) –

	validator_addr (str) –

	signed_new_deed_transfer_txn (str) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (OldTadeedAlgoReturn) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	OldTadeedAlgoReturn

PauseTime

Python pydantic class corresponding to json type `pause.time`.

	
class gnf.types.PauseTime(*, FromGNodeAlias, FromGNodeInstanceId, ToGNodeAlias, TypeName='pause.time', Version='000')

	
	Parameters:

	
	FromGNodeAlias (str) –

	FromGNodeInstanceId (str) –

	ToGNodeAlias (str) –

	TypeName (Literal['pause.time']) –

	Version (str) –

	FromGNodeAlias:
	
	Description:

	Format: LeftRightDot

	FromGNodeInstanceId:
	
	Description:

	Format: UuidCanonicalTextual

	ToGNodeAlias:
	
	Description:

	Format: LeftRightDot

	
class gnf.types.pause_time.check_is_uuid_canonical_textual(v)

	UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Raises:

	ValueError – if not UuidCanonicalTextual format

	Parameters:

	v (str) –

	
class gnf.types.pause_time.check_is_left_right_dot(v)

	LeftRightDot format: Lowercase alphanumeric words separated by periods,
most significant word (on the left) starting with an alphabet character.

	Raises:

	ValueError – if not LeftRightDot format

	Parameters:

	v (str) –

	
class gnf.types.PauseTime_Maker(from_g_node_alias, from_g_node_instance_id, to_g_node_alias)

	
	Parameters:

	
	from_g_node_alias (str) –

	from_g_node_instance_id (str) –

	to_g_node_alias (str) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (PauseTime) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	PauseTime

ResumeTime

Python pydantic class corresponding to json type `resume.time`.

	
class gnf.types.ResumeTime(*, FromGNodeAlias, FromGNodeInstanceId, ToGNodeAlias, TypeName='resume.time', Version='000')

	
	Parameters:

	
	FromGNodeAlias (str) –

	FromGNodeInstanceId (str) –

	ToGNodeAlias (str) –

	TypeName (Literal['resume.time']) –

	Version (str) –

	FromGNodeAlias:
	
	Description:

	Format: LeftRightDot

	FromGNodeInstanceId:
	
	Description:

	Format: UuidCanonicalTextual

	ToGNodeAlias:
	
	Description:

	Format: LeftRightDot

	
class gnf.types.resume_time.check_is_uuid_canonical_textual(v)

	UuidCanonicalTextual format: A string of hex words separated by hyphens
of length 8-4-4-4-12.

	Raises:

	ValueError – if not UuidCanonicalTextual format

	Parameters:

	v (str) –

	
class gnf.types.resume_time.check_is_left_right_dot(v)

	LeftRightDot format: Lowercase alphanumeric words separated by periods,
most significant word (on the left) starting with an alphabet character.

	Raises:

	ValueError – if not LeftRightDot format

	Parameters:

	v (str) –

	
class gnf.types.ResumeTime_Maker(from_g_node_alias, from_g_node_instance_id, to_g_node_alias)

	
	Parameters:

	
	from_g_node_alias (str) –

	from_g_node_instance_id (str) –

	to_g_node_alias (str) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (ResumeTime) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	ResumeTime

ScadaCertTransfer

Python pydantic class corresponding to json type `scada.cert.transfer`.

	
class gnf.types.ScadaCertTransfer(*, TaAlias, SignedProof, TypeName='scada.cert.transfer', Version='000')

	Scada Certificate Transfer.

This is a payload designed to be sent from a SCADA device to the GNodeFactory after the SCADA has opted into its certificate.

	Parameters:

	
	TaAlias (str) –

	SignedProof (str) –

	TypeName (Literal['scada.cert.transfer']) –

	Version (str) –

	
classmethod check_axiom_1(v)

	Axiom 1: Scada is SignedProof signer.
Axiom 1: Scada is SignedProof signer.
There is a ScadaCert created by the Gnf with this ta_alias, and the txn is the OptIn.

	Parameters:

	v (dict) –

	Return type:

	dict

	TaAlias:
	
	Description: TerminalAsset Alias. GNodeAlias of the TerminalAsset for which the SCADA certificate is issued. The ScadaCert can be found from this.

	Format: LeftRightDot

	SignedProof:
	
	Description: Signed Proof from the SCADA Actor. The Scada GNode has a ScadaAlgoAddr in the GNodeFactory database, and the identity of the SCADA actor can be verified by this.

	Format: AlgoMsgPackEncoded

	
class gnf.types.scada_cert_transfer.check_is_left_right_dot(v)

	LeftRightDot format: Lowercase alphanumeric words separated by periods,
most significant word (on the left) starting with an alphabet character.

	Raises:

	ValueError – if not LeftRightDot format

	Parameters:

	v (str) –

	
class gnf.types.scada_cert_transfer.check_is_algo_msg_pack_encoded(v)

	AlgoMSgPackEncoded format: the format of an transaction sent to
the Algorand blockchain.

	Raises:

	ValueError – if not AlgoMSgPackEncoded format

	Parameters:

	v (str) –

	
class gnf.types.ScadaCertTransfer_Maker(ta_alias, signed_proof)

	
	Parameters:

	
	ta_alias (str) –

	signed_proof (str) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (ScadaCertTransfer) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	ScadaCertTransfer

SlaEnter

Python pydantic class corresponding to json type `sla.enter`.

	
class gnf.types.SlaEnter(*, TerminalAssetAlias, TypeName='sla.enter', Version='000')

	
	Parameters:

	
	TerminalAssetAlias (str) –

	TypeName (Literal['sla.enter']) –

	Version (str) –

	TerminalAssetAlias:
	
	Description:

	Format: LeftRightDot

	
class gnf.types.sla_enter.check_is_left_right_dot(v)

	LeftRightDot format: Lowercase alphanumeric words separated by periods,
most significant word (on the left) starting with an alphabet character.

	Raises:

	ValueError – if not LeftRightDot format

	Parameters:

	v (str) –

	
class gnf.types.SlaEnter_Maker(terminal_asset_alias)

	
	Parameters:

	terminal_asset_alias (str) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (SlaEnter) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	SlaEnter

TadeedSpecsHack

Python pydantic class corresponding to json type `tadeed.specs.hack`.

	
class gnf.types.TadeedSpecsHack(*, TerminalAssetAlias, MicroLat, MicroLon, DaemonPort, TypeName='tadeed.specs.hack', Version='000')

	
	Parameters:

	
	TerminalAssetAlias (str) –

	MicroLat (int) –

	MicroLon (int) –

	DaemonPort (int) –

	TypeName (Literal['tadeed.specs.hack']) –

	Version (str) –

	TerminalAssetAlias:
	
	Description:

	Format: LeftRightDot

	MicroLat:
	
	Description:

	MicroLon:
	
	Description:

	DaemonPort:
	
	Description:

	
class gnf.types.tadeed_specs_hack.check_is_left_right_dot(v)

	LeftRightDot format: Lowercase alphanumeric words separated by periods,
most significant word (on the left) starting with an alphabet character.

	Raises:

	ValueError – if not LeftRightDot format

	Parameters:

	v (str) –

	
class gnf.types.TadeedSpecsHack_Maker(terminal_asset_alias, micro_lat, micro_lon, daemon_port)

	
	Parameters:

	
	terminal_asset_alias (str) –

	micro_lat (int) –

	micro_lon (int) –

	daemon_port (int) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (TadeedSpecsHack) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	TadeedSpecsHack

TatradingrightsAlgoCreate

Python pydantic class corresponding to json type `tatradingrights.algo.create`.

	
class gnf.types.TatradingrightsAlgoCreate(*, TypeName='tatradingrights.algo.create', Version='000')

	
	Parameters:

	
	TypeName (Literal['tatradingrights.algo.create']) –

	Version (str) –

	
class gnf.types.TatradingrightsAlgoCreate_Maker

	
	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (TatradingrightsAlgoCreate) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	TatradingrightsAlgoCreate

TavalidatorcertAlgoCreate

Python pydantic class corresponding to json type `tavalidatorcert.algo.create`.

	
class gnf.types.TavalidatorcertAlgoCreate(*, ValidatorAddr, HalfSignedCertCreationMtx, TypeName='tavalidatorcert.algo.create', Version='000')

	Used for Step 1 of TaValidator certification.

Meant to be sent from a pending TaValidator to the GNodeFactory (Gnf), to
initiate the process of certifying the pending TaValidator.
[More info](https://gridworks.readthedocs.io/en/latest/ta-validator.html).

	Parameters:

	
	ValidatorAddr (str) –

	HalfSignedCertCreationMtx (str) –

	TypeName (Literal['tavalidatorcert.algo.create']) –

	Version (str) –

	
classmethod check_axiom_1(v)

	Axiom 1: Is correct Multisig.
Decoded HalfSignedCertCreationMtx must have type MultisigTransaction from the
2-sig MultiAccount [GnfAdminAddr, ValidatorAddr], signed by ValidatorAddr.
[More info](https://gridworks.readthedocs.io/en/latest/g-node-factory.html#gnfadminaddr)

	Parameters:

	v (dict) –

	Return type:

	dict

	
classmethod check_half_signed_cert_creation_mtx(v)

	Axioms 2, 3:

Axiom 2: Is AssetConfigTxn.
The transaction must have type AssetConfigTxn.

Axiom 3: Is TaValidatorCert.
For the asset getting created: Total is 1, Decimals is 0, UnitName is VLDTR, Manager is GnfAdminAddr,
AssetName is not blank.
[More info](https://gridworks.readthedocs.io/en/latest/ta-validator.html#tavalidator-certificate)

	Parameters:

	v (str) –

	Return type:

	str

	
classmethod check_validator_addr(v)

	Axiom 5: Uniqueness.
There must not already be a TaValidatorCert belonging to the 2-sig [GnfAdminAddr, ValidatorAddr] address.

	Parameters:

	v (str) –

	Return type:

	str

	ValidatorAddr:
	
	Description: The address of the pending TaValidator

	Format: AlgoAddressStringFormat

	HalfSignedCertCreationMtx:
	
	Description: Algo multi-transaction for certificate creation, with 1 of 2 signatures

	Format: AlgoMsgPackEncoded

	
class gnf.types.tavalidatorcert_algo_create.check_is_algo_address_string_format(v)

	AlgoAddressStringFormat format: The public key of a private/public Ed25519
key pair, transformed into an Algorand address, by adding a 4-byte checksum
to the end of the public key and then encoding in base32.

	Raises:

	ValueError – if not AlgoAddressStringFormat format

	Parameters:

	v (str) –

	
class gnf.types.tavalidatorcert_algo_create.check_is_algo_msg_pack_encoded(v)

	AlgoMSgPackEncoded format: the format of an transaction sent to
the Algorand blockchain.

	Raises:

	ValueError – if not AlgoMSgPackEncoded format

	Parameters:

	v (str) –

	
class gnf.types.TavalidatorcertAlgoCreate_Maker(validator_addr, half_signed_cert_creation_mtx)

	
	Parameters:

	
	validator_addr (str) –

	half_signed_cert_creation_mtx (str) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (TavalidatorcertAlgoCreate) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	TavalidatorcertAlgoCreate

TavalidatorcertAlgoTransfer

Python pydantic class corresponding to json type `tavalidatorcert.algo.transfer`.

	
class gnf.types.TavalidatorcertAlgoTransfer(*, ValidatorAddr, HalfSignedCertTransferMtx, TypeName='tavalidatorcert.algo.transfer', Version='000')

	Used for Step 2 of TaValidator certification.

Meant to be sent from a pending TaValidator to the GNodeFactory (Gnf), so the
Gnf will transfer its ValidatorCert to the pending TaValidator’s Algorand address.
[More info](https://gridworks.readthedocs.io/en/latest/ta-validator.html).

	Parameters:

	
	ValidatorAddr (str) –

	HalfSignedCertTransferMtx (str) –

	TypeName (Literal['tavalidatorcert.algo.transfer']) –

	Version (str) –

	
classmethod check_axiom_1(v)

	Axiom 1: Is correct Multisig.
Decoded HalfSignedCertTransferMtx must have type MultisigTransaction from the
2-sig MultiAccount [GnfAdminAddr, ValidatorAddr], signed by the ValidatorAddr.
[More info](https://gridworks.readthedocs.io/en/latest/g-node-factory.html#gnfadminaddr)

	Parameters:

	v (dict) –

	Return type:

	dict

	
classmethod check_axiom_2(v)

	
	Axiom 2: Transfers correct certificate.
	
	The transaction must be the transfer of an Algorand Standard Asset

	The sender must be the 2-sig Multi [GnfAdminAddr, TaValidatorAddr], which also created and owns the ASA

	It must be getting sent to the ValidatorAddr

	-The ASA must have:
	
	Total = 1

	UnitName=VLDITR

	GnfAdminAddr as manage

	AssetName not blank.

	The transfer amount must be 1

[More info](https://gridworks.readthedocs.io/en/latest/ta-validator.html#tavalidator-certificate)

Axiom 3: TaValidator has opted in.
ValidatorAddr must be opted into the transferring ASA.

	Parameters:

	v (dict) –

	Return type:

	dict

	
classmethod check_validator_addr(v)

	Axiom 4: TaValidator has sufficient Algos.
MultiAccount [GnfAdminAddr, ValidatorAddr] must have enough Algos to meet
the GNodeFactory criterion.

	Parameters:

	v (str) –

	Return type:

	str

	ValidatorAddr:
	
	Description: The address of the pending TaValidator

	Format: AlgoAddressStringFormat

	HalfSignedCertTransferMtx:
	
	Description: Algo multi-transaction for certificate transfer, with 1 of 2 signatures

	Format: AlgoMsgPackEncoded

	
class gnf.types.tavalidatorcert_algo_transfer.check_is_algo_address_string_format(v)

	AlgoAddressStringFormat format: The public key of a private/public Ed25519
key pair, transformed into an Algorand address, by adding a 4-byte checksum
to the end of the public key and then encoding in base32.

	Raises:

	ValueError – if not AlgoAddressStringFormat format

	Parameters:

	v (str) –

	
class gnf.types.tavalidatorcert_algo_transfer.check_is_algo_msg_pack_encoded(v)

	AlgoMSgPackEncoded format: the format of an transaction sent to
the Algorand blockchain.

	Raises:

	ValueError – if not AlgoMSgPackEncoded format

	Parameters:

	v (str) –

	
class gnf.types.TavalidatorcertAlgoTransfer_Maker(validator_addr, half_signed_cert_transfer_mtx)

	
	Parameters:

	
	validator_addr (str) –

	half_signed_cert_transfer_mtx (str) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (TavalidatorcertAlgoTransfer) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	TavalidatorcertAlgoTransfer

TerminalassetCertifyHack

Python pydantic class corresponding to json type `terminalasset.certify.hack`.

	
class gnf.types.TerminalassetCertifyHack(*, TerminalAssetAlias, TaDaemonApiPort, TaDaemonApiFqdn, TaDaemonAddr, TypeName='terminalasset.certify.hack', Version='000')

	
	Parameters:

	
	TerminalAssetAlias (str) –

	TaDaemonApiPort (str) –

	TaDaemonApiFqdn (str) –

	TaDaemonAddr (str) –

	TypeName (Literal['terminalasset.certify.hack']) –

	Version (str) –

	TerminalAssetAlias:
	
	Description:

	Format: LeftRightDot

	TaDaemonApiPort:
	
	Description:

	TaDaemonApiFqdn:
	
	Description:

	TaDaemonAddr:
	
	Description:

	Format: AlgoAddressStringFormat

	
class gnf.types.terminalasset_certify_hack.check_is_left_right_dot(v)

	LeftRightDot format: Lowercase alphanumeric words separated by periods,
most significant word (on the left) starting with an alphabet character.

	Raises:

	ValueError – if not LeftRightDot format

	Parameters:

	v (str) –

	
class gnf.types.terminalasset_certify_hack.check_is_algo_address_string_format(v)

	AlgoAddressStringFormat format: The public key of a private/public Ed25519
key pair, transformed into an Algorand address, by adding a 4-byte checksum
to the end of the public key and then encoding in base32.

	Raises:

	ValueError – if not AlgoAddressStringFormat format

	Parameters:

	v (str) –

	
class gnf.types.TerminalassetCertifyHack_Maker(terminal_asset_alias, ta_daemon_api_port, ta_daemon_api_fqdn, ta_daemon_addr)

	
	Parameters:

	
	terminal_asset_alias (str) –

	ta_daemon_api_port (str) –

	ta_daemon_api_fqdn (str) –

	ta_daemon_addr (str) –

	
classmethod tuple_to_type(tuple)

	Given a Python class object, returns the serialized JSON type object

	Parameters:

	tuple (TerminalassetCertifyHack) –

	Return type:

	str

	
classmethod type_to_tuple(t)

	Given a serialized JSON type object, returns the Python class object

	Parameters:

	t (str) –

	Return type:

	TerminalassetCertifyHack

Design Specifications

Milestone 1 implements two flows:

	the TaValidator Certification Flow; and

	the TerminalAsset Creation Flow (which requires a certified TaValidator).

The flows are combined in demo.py, where MollyMetermaid is certified as a TaValidator and the GNodeFactory first creates and then activates theTerminalAsset representing HollyHomeowner’s heat pump thermal storage heating system.

For the first flow, there are two actors: the GNodeFactory, and MollyMetermaid (who wants to be certified as a Validator for TerminalAssets - that is, she wants to become a TaValidator.

TaValidaton Certification Flow

[image: alt_text]

Notes.

	Misc

	For Milestone 1, demo.py requires a blank slate to run correctly. In particular, none of the accounts can own any NFTs, and the GNodeFactory cannot have any GNodes yet. To set this up, run ./sandbox reset from your Algorand sandbox repo, and run reset-dev-db.sh from the working directory of this repo (python_code).

	The gnf.graveyard_account is not used in Milestone 1. We expect to use it for managing the lifecycle of TaDeeds.

	Legend

	Red arrows represent on-chain transactions called from one of the actors using algosdk.

	Black arrows represent messages that are not sent on-chain. In milestone 2, these messages will be sent via RabbitMq or a FastAPI. For now, they communicate directly within the demo script.

	Red boxes are Algorand accounts.

	Blue boxes are off-chain python applications. Smart Contracts will get their own color box when they show up.

	Yellow boxes indicate methods. Typically these are actors either sending or receiving off-chain messages.

	Messages

	There are two off-chain messages in this flow, both sent from Molly to the GNodeFactory.

	Molly is implemented in development-only code (dev_utils/dev_validator.py). Since her code is a development and testing tool, it is not held to the same standards as the GNodeFactory code. This is why, for example, her actor self-funds on initialization.

	The payload of the first message is a type of TypeName create.tavalidator.algo.010 and the second payload is a type of TypeName transfer.tavalidator.algo.010.

	Most of the code in this milestone is embedded in the type validation of messages - which is done by both the sender and the receiver. For example, a create.tavalidator.algo.010 payload is not valid unless the 2-sig MultisigAccount [GNodeFactory.admin_acct.addr, PendingValidator.acct.addr] is appropriately funded (with nf_validator_funding_threshold_algos, a value set by the GNodeFactory which in this demo is 100 algos). The payload validations for this message are in schemata.create-tavalidatorcert_algo, and proto_api.json has a description of all the types and their validations.

	Dev Data

	One of the axiom governing the creation of GNodes is that, unless the GNodeAlias has only one word (which applies only to the singular root GNode), a GNode’s parent must exist before the GNode can be created.

	This axiom is articulated in Joint Axiom 1 for the basegnode.010 type, which can be inspected in the proto_api.json specification.

	In Flow 2 we will be creating a TerminalAsset and an AtomicMeteringNode for Holly’s heater. Before doing that, the GNodeFactory must have already created all of that AtomicMeteringNode’s ancestors.

Figure 2: The ancestors for HollyHomeowner’s TerminalAsset

[image: alt_text]

Notes

	The demo calls load_dev_data, a script that populates the GNodeFactory’s database with the 4 required GNode ancestors shown above.

	This hack violates the authority of the GNodeFactory by populating the GNodeFactory’s database. The process for creating any GNode will require validation by the GNodeFactory, where the type of validation depends on the Role of the GNode. For example, ConductorTopologyNodes will require the creation of a DiscoveryCertificate NFT, Once this validation process is fully implemented for all roles the hack will be removed and the GNodeFactory will regain authority as the only entity allowed to touch its own database.

	The root of the tree is not part of the copper. We insist on a single root for the GNode tree (same Joint Axiom 1 mentioned above), but the GNode tree could instantiate multiple topologically disjoint electric grids. The root node provides the name of what we call the world. Worlds whose name start with d are dev worlds. A full GridWorks system running on a dev world is expected to be run locally on a developer’s computer. The rules for security and data in dev worlds are substantially more lax than other types of worlds (which include shadow, hybrid and a single real world).

	Note that the GNodeAlias for Holly’s TerminalAsset includes the world holly. As a rule, the GNodeAlias for a TerminalAsset does not include personal information about the TaOwner. What GridWorks generally does in fact is use the name of a random plant - this keeps the alias memorable without attaching personal information. Since holly is a plant, we could not resist the bit of inside baseball for the demo.

	Note also that the GNodeAlias for Holly’s TerminalAsset has exactly 32 characters. We obviously need to implement take 2 on assigning a TerminalAsset’s GNodeAlias immutably to its TaDeed. This is in our office hours list and we’d love advice on how to do it.

[image: alt_text]

Notes:
-The GNodeFactory database is involved this time. At present, this database is the source of truth for the core attributes of GNodes: their ids, there GNodeAliases, their lifecycle Status, and their CoreGNodeRole. The database also contains pointers to the underlying NFTs, and (in a seperate table) the lat/lon data for the TerminalAssets.

	The TaMulti Account is the 2-signature MultisigAccount [GNodeFactory Admin, Daemon Acct, Holly Acct].

	Note that Molly funds the TaMulti, and has it opt into the TaDeed. This means Molly is using Holly’s private key (as well as the private key of her TaDaemon). This is not appropriate, and will be transferred to the TaDaemon actor.

	This TaDaemon actor will start as a python application, and is then our first candidate for becoming a smart contract. It will be responsible for creating the TaTradingRights NFT for milestone 2. It is also responsible for handling the exchange of an existing TaDeed with a new TaDeed (when, for example, the GNodeAlias changes).

TerminalAsset Creation Flow

New Ctn Flow

Figure 4: New Ctn Flow a
[image: alt_text]

Figure 5: New Ctn Flow B - TaDeed transfer

[image: alt_text]

Discovery Certificates

Discovery Certificates are NFTs intended for use in the process of creating ConductorTopologyNodes, the interior GNodes of the GNodeFactory’s CopperSpanningTree. We care just as much, if not more, about the topological accuracy of ConductorTopologyNodes (or Ctns for short). However, with the exception of when a ConductorTopologyNode changes state by having its role transition from ConductorTopologyNode to MarketMaker, there is no clear reason for there to be money on the line for the entity/entities involved in the creation of a Ctn the way that there is with TerminalAssets.

We anticipate working with utilities and gleaning a significant amount of information from them about the location and voltage of various import ConductorTopologyNodes, as well as well-known binding constraints. There is well-known publicly available topology at about the granularity displayed in the picture below:

[image: https://www.iso-ne.com/static-assets/documents/2017/10/a6_3_emera_maine_2017_lsp.pdf]
(From this [https://www.iso-ne.com/static-assets/documents/2017/10/a6_3_emera_maine_2017_lsp.pdf] ISO NE document about Versant Power Local System Planning)

The mystery is connecting the lat/lon of a house somewhere on this map to the evident ConductorTopologyNodes on this graph. This turns into walking or driving down streets and snapping photos of distribution lines, and providing corroborating evidence with online snapshots of maps that include overlays of city streets and 1-line diagrams. Here is an example:

[image: bangor-1-line-street-overlay]
(From this [https://www.versantpower.com/media/65215/Maps-of-Transmission-Circuits.pdf] Versant Power collection of Transmission Ciruit maps)

The articulation of how DiscoveryCertificates will support that activity is still underway. To start, we can convey that the DiscoveryCertificate serves as an embelm of recogition for somebody’s ehlp in the process of collaboratively constructing the GNodeFactory topology, possibly in some artistic and/or public way. We are not sure how successful that alone will be for motivating people to pull together the supporting materials for a DiscoveryCertificate. Other points to consider in the design phase: - There is potentially money on the line for ConductorTopologyNodes when they become MarketMakers. That transition requires an entity that will own and run a SmartContract brokering local market intereactions, and that entity must provide a third-party validated demonstration of their capability of providing continuous, real-time power flow metering on the constrained edge just above the Ctn in question. - It is not appropriate for somebody who has made an accurate first guess at the location of a Ctn to have squatter’s rights on a future MarketMaker market, as maintaining validat MarketMaker status is more rigorous, expensive, technically complicated, laborious and ongoing than the initial Ctn creation, which boils down to piecing together old maps and charts, doing some physical checking and taking of photos, and compiling it into a document that another person could use to determine if they agreed with the topological inference). - However, we could consider

Axioms regulating CertificateDiscovery

As a first step, we are allowing a Discoverer to send a CreateDiscoverycertAlgo message to the GNodeFactory. To start, for practical purposes the GNodeFactory will just say yes to any well-formed request. We require this permissive initial response so we can get off the ground and recursively growing the CopperSpanningTree for dev and testing.

The big question in my mind right now is what checks we want to put in place going forward between the request from a Discoverer and the issuing of the deed. The purpose is to put in place an incentive structure that generally leads towards a more accurate and larger SpanningCopperTree. Some initial thoughts: - The parent of the new Ctn its direct descendants, and the Algo addresses that own those DiscoveryCerts are obvious interested parties who also might be able to sanity-check the SupportingMaterials. - The consequences for the children and their descendants are greater, since there is likely an upstream constraint identified by this new Ctn that those children can either ignore or must respect. In addition, their aliases will all change. - There may be additional interested parties (say a group of enthusiasts who like to provide DiscoveryCertificates in this county, or the local utility) - Perhaps send out a PendingCtn notice to an InterestedParties list (that starts out as parent and children and has room for growth) with a period for public commentary? - And then designing am arbitration process that can occur at the end of the public commentary period but also in the future, if another party unearths data suggesting inaccuracy in the original data.

"TypeName": "create.discoverycert.algo.000"
 "GNodeAlias":
 "DiscoveryAddr":
 "SupportingMaterialHash":
 "OldChildAliasList":
 "MicroLat":
 "MocroLon":
 "CoreGNodeRole":

TODO: Think through how to set up code generation tools for automated documentation of the api-style descriptions of the CreateDiscoveryCertAlgo, its attributes and their formatting requirements, and the list of additional semantic checks in axiom format.

GNodeRoles

The GNodeFactory recognizes 7 GNodeRoles:

	AtomicMeteringNode

	AtomicTransactiveNode

	ConductorTopologyNode

	InterconnectionComponent

	MarketMaker

	TerminalAsset

	Other

The GNodeFactory is the authority on GNode creation and update, and the copper topology of the grid as specified by the the spanning tree articulated by the non-other GNodeRoles. A GNodeRegistry is expected to expand the Other category into additional roles, such as AggregatedTransactiveNodes.

GNode Factory System Architecture

The GNodeFactory sits inside an ecosystem of managing the relational data of the GridWorks
operations. In fact it sits at the top of a set of 4 registry-type services

[image: alt_text]

The only entities that the GNodeFactory communicates with are GNodeRegistries and, for
development purposes, GridworksDevs (likely via command line tools)

[image: alt_text]

What it takes for the GNode Factory to create a new TerminalAsset

GNode’s come in flavors called GNodeRoles. For most flavors the factory will create
a new GNode on request from the GNodeRegisty as long as basic consinstency axioms are met:

	GNodeId, GNodeAlias and GNodeRole have correct format

	The immutable identifier GNodeId is not already taken by another GNode

	The structured mutable identifier GNodeAlias has never been used by
another GNode

	The parent GNode exists (as encoded by the left-right-dot GNode Alias)

However, for TerminalAssets (that is a GNode whose GNodeRole is TerminalAsset) the
factory sets a higher bar. It will not issue a new GNode until it can do the following:

	Give Polly President a reason to trust that the location of Holly Homeowner’s heating system (with its revenue grade metering system) is accurately represented on the topology of the electric grid;

	Update its known topology of the electric grid to include this new leaf node; and

	Maintain a growing sub-graph of the electric grid that is trusted to be accurate by all concerned parties, and that protects the privacy of homeowners by only sharing their location with parties that have their consent (Molly Metermaid in the case of Holly Homeowner)

[image: alt_text]

The GNode Factory gets messages from the GNode Registry [https://github.com/thegridelectric/g-node-registry]. The GNode Registry is responsible (at present) for validating the quality of the meter and the electrical characteristics of the load. It then passes on a request for creating a new TerminalAsset GNode to the GNodeFactory:

[image: alt_text]

Note that Holly’s public key getting passed in this request is meant to allow additional security-related data that requires the homeowners signature, as related to this TerminalAsset, to be used off-chain. For example, the GNodeRegistry may have a collection of artifacts that it uses to validate the metering and device characteristics (like pictures, metering data, make/model of the device) and this could be encrypted and signed by Holly.

The opcode fees incurred by the GNodeFactory in creating the NFTs (and later, in any changes made to local state of the GNode/encrypted location pair when the Factory is a stateful smart contract) will be charged to Holly’s taOwnerAccount.

The requested GNodeAlias will have a format like w.isone.vinalhaven.apple. In order for this GNode to be created, the parent GNode (in this case w.isone.vinalhaven) must exist.

If it does not exist, the GNodeFactory sends an error message back to the registry explaining this.

Otherwise, as long as Holly’s account is in good standing, the GNodeFactory reserves the alias and waits for a message from the GNodeRegistry with the Trusted Validator’s attestation.

Once that second message comes through from the GNodeRegistry with Molly’s attestion that she has validated the electrical characteristics of Holly’s device that Polly cares about, its metering, its location and Holly’s ownership, the GNodeFactory creates two NFTs.

The first, and most foundational, is Holly’s TerminalAsset Deed NFT. This is the NFT which establish’s that Holly owns the Terminal Asset.

[image: alt_text]

Holly will be expected to hold onto this NFT unless she sells her house, at which point the NFT for her heating system could be either destroyed or transferred to the new owner.

The second, and more functional, is Holly’s TerminalAsset Trading Rights NFT.

[image: alt_text]

Holly does not expect to be sitting next to her heater, watching energy prices, and manually deciding when to charge her thermal store. Instead, she will enter into a contract with an organization that has a software agent that can make those decisions for her heater. That agent - another GNode, this time called an AtomicTNode - will require the Trading Rights NFT in order to place orders and enter into market contracts for buying electricity.

Why are we focusing on the topology

The electric grid is a somewhat hierarchical graph. To a first approximation, most of the constraints on power flow happen at places where voltage changes. The graph is pretty well instrumented and modeled at the high-voltage levels, where the grid operators operate the lines and run markets (think of the markets as the grid operator’s first and best tool for grid operation). However, the graph at the lower voltages is not very well mapped out. Distribution utilities own and maintain these lines. Some of these utilities have decent 1-line diagrams of their lines but most are partial, only in paper-based records, or both. When these lines were designed, it was with the assumption that load ignored the electric grid and that a healthy dose of the central limit theorem could be applied. Also, of course, the lines were not designed to serve all-electric households.

Why go to the trouble of keeping careful track of the transactive asset’s location on the topology? In fact, until Transactive Energy becomes a serious industry, none of the incumbent organizations (grid operators, distribution utilities, energy suppliers) will care about the exact location on the network. Often, all that demand response companies care about is what grid operator territory their load is in, or perhaps what utility is serving their load.

In addition, the other attributes of the TerminalAsset - metering quality and electrical charecteristics - are of immediate concern to the various existing potential energy transaction counterparties. So why are we focused on a hard problem that nobody cares about?

The answer is that topology will matter almost exactly when blockchain has the potential to make a real difference to electricity markets. While transactive energy is an emerging technology, the incumbent transaction counterparties will be fine with a centralized trusted authority that is essentially a benevolent dictator handling all aspects of the transactive energy ecosystem. (Note: it could be the case that a multi-party ecosystem emerges organically. But transactive energy is hard to get right, and it is likely that some organization will get most of the pieces right first. This organization will not only run the centralized registry handling information authentication, but also the trading strategies for the individual terminal asset and the intermediate market structures.)

However, this trust in running a 1 MW science experiment is very different than the trust required of an organization managing a 1 GW aggregated load asset capable of going from no load to full load in several seconds in response to a price drop (which is what could happen if, for example, Maine were to meet its legislative mandate of installing 100,000 heat pumps with transactive heat pump thermal storage systems).

In other words, transactive energy has the potential to change rapidly from a small science experiment to a powerful grid asset that has the potential to wreak havoc. This wreaking of havoc could occur at all voltage levels but is especially troubling at low voltage, where the system has not been well mapped.

To give a concrete example of what we are talking about, imagine there is a cul-de-sac where all the people living there have gone all-in on this premise. They have converted their gas and oil space and hot water heating to heat pumps coupled with thermal stores. They’ve traded their gas vehicles for EVs. And all these new electrical appliances are paying attention to the wholesale price of electricity and doing their very best to buy in the lowest-cost wholesale hours (which is in fact entirely aligned with using low-carbon electricity.)

In this scenario, the local low-voltage lines and transformers serving this the cul-de-sac are very likely to catch fire.

So in order to make a real difference, transactive energy needs to do two things:

	It has to be prepared for serious decentralization of authority, and

	It has to focus on the hard problem of grid topology out of the gate, and not when it becomes a burning problem.

This is why we are designing a stateful smart contract to capture the evolving picture of the grid topology as our transactive asset grows.

What does this have to do with algoship [https://github.com/jasonpaulos/algoship]

As new transactive load is built in houses, it needs to be participatory in discovering the unknown topological structure while maintaining privacy about the location of its homeowner.

This is a game of battleship.

Hybrid Transactive Asset Demonstration

GridWorks is working with Ridgeline Energy [https://ridgelineanalytics.com/] on a pilot demonstration project run by Efficiency Maine to install 5 space heating systems that use heat pumps coupled with thermal storage in Maine. If this first demonstration succeeds, the goal is to expand to hundreds of homes installed in an area of Maine where transmission constraints and wind projects are driving wholesale electricity prices negative in about 30% of hours during the winter months, and to demonstrate how transactive heat can reduce heating costs while simultaneously improving the economics of the constrained wind projects.

GridWorks and Ridgeline are building Demonstration SCADA Devices (DSDs) that will do the monitoring and control of these systems. The DSD has two components - a high voltage box with the various relays required for dispatch, and a low-voltage box with the brains and most of the sensing. The low-voltage box includes a raspberry Pi 4 with open-source code developed by GridWorks. This is still a work in progress, although a first DSD has been installed and is currently monitoring the power use of a heat pump hot water heater in Freedom Maine. The code running on the Pi is availabe at this repo [https://github.com/thegridelectric/gw-scada-spaceheat-python]. Jessica has done most of that coding work to date, although Andrew Schweitzer will be taking on an increasing role in the continued development effort for the SCADA.

The plan is to set up key components of the Gridworks Platform - including in particular the GNodeRegistry and the GNodeFactory - on Amazon instances. Instead of running on a private algo sandbox instance, this demonstration GNodeFactory will create NFTs on TestNet.

The 5 heating systems will be the real partipants in this demonstration. A pair of NFTs on testnet will be created for each of the 5 homeowners - the Terminal Asset Deed

[image: alt_text]

which is the token attesting to the fact that the homeowner owns a specific type of heating system with specific metering capabilities at their specific address, and the Terminal Asset Trading rights NFT

[image: alt_text]

which the homeowner will provide to the GridWorks bidding agent (aka AtomicTNode) in order to allow the agent to participate in the GridWorks market structures.

In addition to these 5 real homes, we will create 500 simulated homes which also join the GNodeRegistry and are assigned their pair of NFTs.

Initial Design Considerations

This repo is the major deliverable for the first milestone of Putting the GNode Registry on Chain for our Algorand Redefining Demand Response project.

The core team working on this milestone includes Jessica Millar of GridWorks [https://gridworks-consulting.com/who-we-are] along with Karl Knaub and Bill Bradley of Mirabolic [https://www.mirabolic.net/about]. Andrew Schweitzer, Karan Nayan and George Baker also contributed.

As we began the design process, our initial and constant focus was on the question: what do we need to do in order to make sure the model of transactive load in our platform is accurately representing reality, and how do we make sure all the relevant actors trust this?

The design phase was an exercise in making things as simple as possible while still doing something critical and innovative. We realized, for example, that the existing registry structure embedded in the highly complex Gridworks platform was way too complicated to be easily understood. It also contained information - like the storage capability of different types of thermal stores, the various makes and models of circulator pumps, radiators and baseboards used for hydronic heat distribution, and the startup seconds of compressors - necessary for doing a good job in creating heat pump bidding strategies and handling backoffice device and equipment management etc but not for creating the foundation of counterparty trust between Holly Homeowner and Polly President (see below).

We realised that there was a core triangle of relationships that would be showing up over and over again. Here are template actor artifacts representing the entities in these relationships:

[image: alt_text]

[image: alt_text]

[image: alt_text]

Each of the three pairwise relationships are critical to understand and serve:

[image: alt_text]

Eventually we boiled down to the three core attributes of a terminal asset that we needed to address in order to provide a foundation for the energy transaction between Holly and Polly, facilitated by Molly:

[image: alt_text]

Of these three attributes - metering, key electrical attributes of the physical device, and location - we whittled the focus down to what we believe is the single most unique and challenging feature: validating physical and graph location of nodes. We describe the main reason for this in our architecture document.

Work done to date

	Test-driving various algorand demos, reading the docs, trying out pyteal and its sdks, looking a bit at teal

	Thinking through what it really meant to put the GNode Registry on chain (above)

	Taking the GNode Registry out of the gridworks platform repo and drastically pruning it

	Making sure the docker images still build correctly

	Beginning the test suite

	Beginning the design process for this repository

	Creating the beginnings of the wiki documentation, which will be the main structure where we will embed documentation, tutorials and artifacts.

Thoughts and questions

Death and change

TerminalAssets lifecycle goes from Pending to Active to Deactivated. In order for an entity to actively trade using the trading rights for a TerminalAsset, the TerminalAsset must be Active. And once a TerminalAsset is deactivated, it will remain deactivated at all times in the future.

Certain attributes of an TerminalAsset can change without changing the state of the TerminalAsset to Deactivated. For example, the underlying device could break and be replaced with another device of the same make and model and this does not change the identity or lifecycle state of the TerminalAsset. On the other hand, if a 10 kW heating system is replaced by a 100 kW diesel generator, it will no longer be the same TerminalAsset - the original TerminalAsset is deactivated and a new one at that location must be created.

The lifecycle state and axioms described above are handled off-chain for the most part, in the GNodeRegistry. However, there are consequences for the GNodeFactory with its focus on location and issuing NFTs. In particular, whatever system we use (GPS with error bar, address) their will be cases - for example initial mistakes - where we want to change the location data without changing the state of the TerminalAsset to deactivated.

To handle this, we need to do one of three things:

	Store the encrypted, hashed location information in a mutable field for the NFT so that in the above scenario it can be changed;

	Store the encrypted, hashed location information in the transaction note instead of the NFT itself; or

	Create a lifecycle for the NFTs, so that they can be pulled out of circulation in order to maintain a unique deed and trading right NFT per active TerminalAsset.

I believe the third path is what people call burning NFTs, and would require setting up an escrow account which acts as a graveyard for NFTs and setting up some clawback mechanisms. This is my current inclination. In fact, we may choose to expand this this re-issuing of the NFT beyond a forced change of the hashed location data to any attribute changes in the GNodeRegistry. This allows the NFT trading rights token itself to be a signal that the account trading on behalf of the TerminalAsset ought to refresh its data from the GNodeRegistry in case anything has changed that might update its trading strategy.

In this case, if any registry data is changed about a TerminalAsset (location or otherwise) where the TerminalAsset state remains Active, the original NFT is burned and a new one is issued. This would allow the immutable MetaDataHash to store the naked GNodeId/Alias data and encrypted location information. This path would also allow us to pull NFTs out of circulation once the TerminalAsset is deactivated - which is not strictly necessary the way it is necessary to not have two NFTs for the same TerminalAsset, but will be cleaner.

However, we have also experimented with 1) above, repurposing the ReserveAddr using the algosdk.encoding along with a shake_256 hash for an input string. This works, but we are not sure we want to be repurposing attributes (although it does not seem to us that ReserveAddr would ever be used for an NFT?).

We have not fully thought through the pros and cons of storing the the location information in transactions instead of the NFT itself.

Protecting privacy in the case of sequential NFT creation

Imagine a scenario where Molly Metermaid is doing a series of authorizations sequentially along a street. This could turn into a series of sequential, rapidly created NFTs. If I know that my NFT was created immediately after my neighbor’s NFT, this could make it easier for me to guess the connection between my neighbor and her NFT. The GNodeFactory should probably take some steps to protect against this. To start, it can batch its NFT requests over time (say, every 48 hours) and then randomize the creation of the NFTs in that batch.

More on trading rights

When GridWorks was a start-up called VCharge, we had a service level agreement with homeowners. We installed our SCADA (controls and metering) on their their electric thermal storage heaters at no cost to them, guaranteed them a level of performance of their heating system (basically, their thermostats would work well) and sent them a rebate check once a month for 25% of the electrical energy they used for heat. In return, they signed up with us as their energy supplier, and we offered them the flat (i.e. uniform cost per kWh) standard offer rate (i.e., the default rate from the provider of last resort) for electricity. We chose when they consumed electrical energy, and were rewarded in the wholesale energy markets run by the mid-Atlantic grid operator PJM for choosing to buy electricity when it was low-cost.

In addition to buying energy on the hourly wholesale electrical energy market, we also had trading rights for these TerminalAssets in the PJM Regulation market [https://learn.pjm.com/three-priorities/buying-and-selling-energy/ancillary-services-market/regulation-market] - one of the fast dispatch ancillary service markets run by the PJM.

Fundamentally, we had a Service Level Agreement contract where a number of things were exchanged, including most importantly us getting the TradingRights for their NFT. These TradingRights meant that we bore the financial consequences of when the device consumed or created electricity, and bore both the responsibiity and authorization to bid into markets, when applicable (in this case, for the ancillary services). In order for this to be a sane transaction on our part, it also meant that we (or, really, our code) had decision rights over when they heating systems consumed or created electricity.

The trading rights for the energy market representation and the regulation market representation in the above example were handled very differently. The energy market case was handled by the local regulations and processes at the State level for managing how people change energy suppliers. At the end of the day, most of this involved internal billing and accounting (and a somewhat turgid API) managed by the local utility PPL, which handled all the household metering and billing. The ancillary service market trading rates involved filling in a spreadsheet with the addresses of all of our TerminalAssets, sharing it with PJM and keeping it up to date when it changed by more than a couple hundred kW.

We do not anticipate that the TradingRights NFT we create here will be immediately adopted by grid operators or utilities. Rather, these TradingRights will belong to AtomicTNodes or to AggregatedTNodes (T for Transactive). These will be code actors that trade on internal GridWorks market platforms. These platforms need to respect and integrate into various upstream markets.

Servicing the Trading Rights

One important question to ask is how and when a TradingRights NFT can be sold or traded. Will it be a like a mortgage, where the homeowner does not have decision rights over who exactly holds their mortgage? Should the TradingRight NFT be bundled with its Service Level Agreement (SLA) terms and conditions so that anybody buying the TradingRights must take on the responsibility of honoring the Service Level Agreement? And, in particular, the homeowner can invoke the clawback if the SLA is violated?

Thinking through the answers to these questions is still a work in progress. However, one likely similarity with the mortgage industry is the utility of the concept of servicing a TradingRights NFT and its assocaited Service Level Agreement. When a mortgage is created, it is immediately split into two parts. The large part is most of the Principle and Interest. A tiny sliver (a few basis points) goes to mortgage servicing, which handles billing and reporting (for example, the letter to a homeowner letting them know that a new entity holds the P&I, but nothing will change about how they pay their bills etc).

VCharge had this servicing component of course as well. It consisted of writing rebate checks and sending them out along with a letter of explanation each month to the people with whom we had Service Level Agreements. This function was administrative in nature, very different than designing the automated bidding strategies for AtomicTNodes, and very important to get right.

Storing graph structure (partially) in mutable structured identifiers

The nature of the structured identifiers (GNodeAliases) means that as the GNodeFactory’s grid topology evolves, the GNodeAliases change. If we are storing these GNodeAliases in the stateful Factory contract, then an upstream topology change in the spanning tree will incur opcosts to all the downstream assets (paid for by their owners).

We have had a lot of debate about this. The GNode Aliases are used to help enforce adding to the topological knowledge, since before a TerminalAsset can be created it needs to find its existing parent in the existing GNodes. That is, creating a GNode not only validates its physical location but also validates the edge between it and its parent.

In the end, I think this is worth the additional costs of alias changes. However, it is something that could be a problem if fees got too big.

Why care about location when what really matters is topology?

Bill and Karl both have had a fair amount of experience with large data sets that have to do with location. Dealing with physical location (addresses, gps, town plots) comes with a certain amount of guaranteed pain.

However, we ended up deciding it was a requirement. Physical addresses are used to map the electric grid - this is how grid operators and utilities identify their systems.

Adding a GPS chip and NFT to the Maine Demonstration Scada Device

Since we are building the SCADA systems for the first 5 homes in Maine, we can add a GPS chip, a private key for encryption, and a blockchain account and/or an NFT to the SCADA. This could simplify the process of validating location and revenue-grade metering.

Some comments about this:

	It is a good idea, and others have done versions of it on other chains. See for example the OLI meter [https://www.my-oli.com/en/oli-meter-en].

	It doesn’t address the issue of ownership and decision rights.

	It also does not address the topology validation (i.e. validating the edge connecting the TerminalAsset to its parent in the GNOde spanning tree).

	We’d like to design a system that will work when the SCADA/metering does not have these capabilities.

Incentivizing graph structure discovery: beyond Terminal Assets

We are starting with TerminalAssets, but there will be other components of the grid (edges that create loops and internal nodes) that require mapping. We will need to come up with some incentive structure for motivating entities to do this. However, this is a problem for another day.

Why does this project bring value to the Algorand ecosystem?

As we described in our grant application, we believe that blockchain is likely critical for transactive energy to occur at scale and that transactive energy, particularly transactive load, is critical for rapid and cost-effective decarbonization.

The flipside is that this is a project tying blockchain to the physical world (the real-time exchange of energy) in a way that could move rapidly to tremendous scale once a tipping point is reached. This could become a flagship example of blockchain as a utility in a realm having very little to do with the chain itself, the creative arts, or drugs/illicit activities.

Note that some of what makes this project valuable to the Algorand system involves code, work and ideas that are not on chain and are not even part of the grant: including, for example, installing SCADA systems in basements in Maine. We think that blockchain cannot be airbrushed on top of the design of transactive load, and instead must be designed in correctly by asking the questions we have asked above: what is critical, what is foundational, and how does it evolve and scale?

Project: Redefining Demand Response

Milestone 1: GNodeRegistry on Chain, Deliverable Summary and Report

This report is organized according to by the deliverables enumerated in the original SOW for Milestone 1, GNode Registry on Chain:

[image: alt_text]

Report on Key Papers re Ethereum and Algorand

This report identifies the papers and related technology that will guide our development of the GNodeFactory.

The purpose of the GNodeFactory is to provide a foundation for the GridWorks Transactive Energy Management (TEM) system. The GridWorks TEM system is comprised of a diverse collection of applications that communicate with each other primarily via asynchronous message-passing. The messages shared by these applications are often time-critical, managing real-time operations of physical devices on the electric grid. In addition, these messages often contain significant domain-specific semantics about the physics of the electric grid and the markets we are developing upon which electrical energy and ancillary grid services are exchanged for money. The reactive manifesto [https://www.reactivemanifesto.org/], which outlines how to build responsive, resilient, elastic, message-driven systems, has been and will continue to be a guiding thought-piece for our system-wide development efforts.

The GNodeFactory as implemented in this milestone and the next may have no smart contracts. It creates NFTs that provide validation for TerminalAssets and certication of trading rights for those assets. We describe what this means in more detail below, but it is essentially another take on Proof of Origin Certifacte NFTs in the electricity sector, likely comparable in function to what Climatecoin [https://www.climatecoin.io/] has implemented. Even for this relatively straightforward task with examples to draw upon from others, it became clear that we will require a solid plan for preparing for and handling vulnerabilities. The business logic is complicated enough that without a somewhat formal and axiomatic approach, even the Layer 1 part of our application is at risk for both design and code vulnerabilities. This issue will magnify as we begin designing PyTeal contracts.

Given the purpose and nature of the GNodeFactory, we require guiding principles for its development that can help us deliver a formally sound application. Given the message-passing nature of the larger GridWorks system, this starts with ensuring the syntax and semantics of messages passed to and from the GNodeFactory, and internally within sub-systems of the GNodeFactory.

A first step towards mitigating risk includes design specification, with human readable graphics that capture the logic of message flows.

A second step that we have begun implementing in this Milestone is incorporated in what I will call our proto-API. Every message that is sent to or received by our GNodeFactory has a strongly defined type. As implemented now, these types are all strings - although as we move closer to implementing ABIs we expect many of the types will be bytes. Every type has a TypeName that is encoded within the message and also expected to be passed in meta-data. The TypeName is a pointer towards both how to decode the message payload, and also to a set of validations that must be passed in order for the payload to have that Type. These validations, which are enumerated as axioms, encapsulate the underlying semantics of the intended business logic for the message. The json proto-API specification includes a description of all the fields in the types, as well as a description of the axioms for each type. Finally, there are schema for each type that facilitate translation from the type to a native python NamedTuple (which we select for enforced immutability, which is appropriate for message payloads passed between applications), The schema also provides validations for all of the type’s axioms. These validations are a combination of generated code for basic attribute type and format, and hand-written code filling in a method for each axiom.

We expect to integrate this protoAPI with the ABI for our first PyTeal contract (the Representation Contract of our second Milestone). We are therefore paying close attention to the ARC-4 [https://arc.algorand.foundation/ARCs/arc-0004] and the ABI support for PyTeal [https://pyteal.readthedocs.io/en/stable/abi.html].

We expect our first PyTeal contract to be very simple. We plan to use its development as a test bed for improving our formal validation mechanisms, and for beginning to use tools that can help us do this. Ideally, we can provide a formal verification that all edge cases for this first contract have been examined and tested. We are very interested in learning more about additional tooling that could support us in doing this, in particular any progress made by runtime verification [https://www.algorand.foundation/news/rtv-foundation-grant] on K-based modeling and verification tools built specifically for Algorand.

I will end with the following comment. When we prepared the grant and wrote down this deliverable of reporting on key papers, I had been reading and enjoying the literature and imagined that the most important first thing for me to do was to continue absorbing the theoretical fundamentals. What I rapidly discovered was that the first and most fundamental thing I needed to do with these ideas was to experience them in action. I felt enormous existential satisfaction the first time I created a concept of a thing (i.e., generated a public/private keypair) and then gave it existence (an Algorand account) by sending it money. The thrill was perhaps heightened by doing this in an offline sandbox environment. It was as if I suddenly really understood that this private key could be a key for a door to an entirely new realm, one constructed by axiom and (at least in the case of this grant) capable of acquiring a harmonic affinity to the more physical parts of our life. It turns out Alice’s key doesn’t match with Bob’s lock after all – It has always been about opening the door to wonderland.

Distributed Exchange Prototype Code

The first work of the GNodeFactory is creating an block-chain enabled certiication and authorization process that must be completed for AtomicTransactiveNodes (the agents that both bid into markets on behalf of Transactive Energy Resources), prior to their participation in a MarketMaker electricity and ancillary services market. This initial work does not require an understanding of Distributed Exchanges like UniSwap and Alogfi. However, once this initial work is complete, it will be time to move signifincant parts of the MarketMaker system on chain. This will involve a tree of Smart Contracts, one for each MarketMaker GNode. Coordinating with each other, these Smart Contracts will need to do the equivalent of what grid operators do today as they run markets: solve an Optimal Power Flow (OPF) and use the resulting prices that fall out of the underlying LaGrangian multipliers to determine local prices on the grid topology. Under the hood, the MarketMakers will need to operate in a way simiilar to the liquidity pools (LPs) of Distributed Exchanges (DEXes). There are several things that will make the development of these contracts more complicated than DEX LPs:

	The tree of MarketMakers must coordinate globally with each other to solve Kirchoff’s law (via a distributed OPF) for the entire grid;

	The known topology of the grid will be incomplete;

	Not all of the devices exchanging electricity with the grid will participate in these markets (and this includes devices that respond to grid conditions through market mechanisms foreign to the tree of MarketMakers, as well as devices that are oblivious to grid conditions)

	The exchange of energy and/or ancillary services for money will require a 2-step settlement process, since the device-level electricity meters at the foundation of the contracts are usually but not always online.

That being said, the design of LP-like PyTeal MarketMakers will also require a deep understanding of how DEXs work, and that is why we started the grant process by examining existing DEXes. Early on in this grant project, we (Karan Nayan and Jessica) got to the point where we had a first pass understanding of how the several hundred lines of UniSwap contract worked. This involved deploying our own variant of Uniswap in a test ethereum environment and interacting with it with small swaps. In addition, we examined the publicly available information on the Algofi contracts, in particular the Runtime Verification security audit of Algofi AMM and Nanoswap [https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/Algofi-dex-nanoswap.pdf]. Finally, we looked at various notorious examples of exploits in liquidity pools, and the underlying design and code failures that allowed for them.

The primary conclusion we reached from this exercise is what we describe above: that an essential step out of the gate, prior to our first Smart Contract, is a development framework for ensuring formal soundness that goes well beyond a robust set of tests.

A fully implemented hierarchy of LP-like PyTeal MarketMakers is beyond the scope of this grant. However, their development remains a major focus of the project. This starts with designing and deploying a verification framework as described above. After that, we will start with logically simpler PyTeal contracts that are part of the initial certification work. These simpler contracts can provide a learning and vetting process for our verification methods.

Report on Energy Consumption Validation: TaDeed NFTs

Part 1: Clarifying What and Why

The first several months of the grant, we focused on the question of what we exactly wanted to validate and why we wanted to do this. The result of this initial period inquiry is that we want a trustable mechanism to validate key properties of physical TransactiveDevices and their online counterparts, TerminalAssets.

A TransactiveDevice is a tuple of 3 physical things:

	An electrical device connected to the grid that can consume and/or produce electrical power;

	An electrical meter that measures the power and energy consumed and/or produced by that electrical device and has the accuracy characteristics required to meet existing and pending grid balancing challenges (that is, the challenge of keeping electric supply and electric demand in balance on various timescales as wind and solar electricity become more prevalent); and

	The physical location of the device, which can be used to figure outwhere the electrical device is connected to the topology of the electric grid.

A TerminalAsset is likewise a tuple of 3 things: an online representation of the electrical device and electrical meter, and a lat/lon pair that can be used to capture where the electrical device is connected to the topology of the grid. Note that most of the time, TerminalAsset can be conflated with TransactiveDevice. Within the GridWorks TEM system, the developers and the applications can and will treat TerminalAssets as if they are in fact their underlying physical TransactiveDevices. Indeed, we will conflate the two in this report. The difference is that, like an appropriately formatted string only becomes an Algorand address when it is funded, the GNodeFactory can determine when an appropriately formatted tuple of 3 things actually becomes a TerminalAsset - and this will be when the trustable validation mechanism occurs.

This definition of TerminalAsset is tailored to suit our stance towards engaging with climate change. As our energy sector transitions to renewables, the world’s electric grids will become a critical and constrained resource in the ecosystem. The copper graph of substations and cables is a shared resource, as is the electricity once it is flowing on the lines. At its most foundational level, the exchange of electricity goods and services is neither an abstraction nor a discrete event on the electric grid: it is a continuous stream of electrons obeying Kirchoff’s laws. Many existing contractual frameworks attempt to gloss over this inherent physicality of sharing and exchanging electricity through time and space. The structure of wholesale electricity markets provides time-varying prices to generators that vary from node to node on the high-voltage transmission grid. However, the market for electricity consumption only provides locational granularity at roughly the State-wide level, and only a tiny fraction of electricity consumers can benefit from reacting to the variation in electricity prices.

Certifying TerminalAssets can provide the foundation on which to build new electricity contracts that can involve Aggregated Terminal Assets either as buyers or sellers, where the cost per MWh for electrical energy varies in time durations approaching 5 minutes and varies by location on the grid topology at a granularity approaching transformers on cul de sacs.

The precise definition of TerminalAsset was informed by the concrete problem we are trying to solve on the grid. During periods of high renewable generation, wholesale prices drop, go negative, and eventually the renewables are curtailed off. Curtailment data tends to be treated with great commercial sensitivity. However, we have found several pockets of grid nodes in Maine where the wholesale prices facing generators is negative for about 25% of the year, skewing towards winter. The trend of low and dropping prices for renewables is well documented and arises everywhere that wind and solar production reaches certain levels. This poses a significant medium-term threat to wind and solar development. The problem in a nutshell is that the industry expects a vertical demand curve, and the supply curve is determined by the marginal cost of different fossil fuels. Markets that attempt to match electricity generators with a zero marginal cost with vertical demand curves do not work well. The result is zero or negative prices, and wind and solar PPAs that are not making as much money as was originally forecast. The Demand Response industry focuses on turning off load during times when resources are scarce, and prices are high, but the more immediate problem is that we are ignoring abundance: we are not turning on load and taking advantage of those times and places where resources are abundant, and the true value of energy is low. Again in a nutshell, redefining Demand Response means creating demand curves that are highly elastic in low prices.

We are engaged in a project run by Efficiency Maine Trust this winter involving a handful of hydronic heat pump thermal storage home heating systems installed in and around Millinocket ME. (Millinocket is one of the two locations in New England with significant levels of negative wholesale prices.) Allowing electricity consumers to buy and store energy at these negative prices could save homeowners over $1,000 per year on the cost of home heating. This will require at least two coupled innovations:

	A regulatory change allowing load to buy energy on New England wholesale markets at local (nodal) prices rather than at the State-wide price;

	A new metering contract between the grid operator and Transactive Loads founded on a trusted validation of the accuracy of their meters and their locations on the topology of the grid.

We will be piloting these innovations in partnership with the New England Grid Operator (ISO-New England) and Efficiency Maine. If the results of this winter’s pilot are positive, Efficiency Maine will be looking to expand to a second much larger rollout, which could provide a practical example of balancing wind with transactive space heat at a scale that could change the level of wind curtailment in Millinocket.

Putting in place a well-designed TerminalAsset validation process this year could significantly improve the probability of a positive outcome in terms of driving regulatory change in the areas of sub-metering and settlement. That is, this validation process will provide a foundation for the new energy contracts that must be formed for Transactive Energy Resources to take advantage of the time- and location- specificity of abundant renewable energy. The first concrete example of this will likely be in thousands of homes in Northern Maine. However, the scope is global. We believe this is a time where one well-executed and commercially successful demonstration could create a sea-change in what people think the load side is capable of.

Having now laid out why we are focusing on TerminalAsset validation in this grant, let us revisit our definition of TerminalAsset. The reason for including electricity metering in the 3-tuple should now be clear. The reason for lat/lon has been partially clarified: we need to be able to locate the point on the power grid where the terminal asset is connected. The negative wholesale prices in the ISO NE electricity market at Millinocket result from an edge constraint on the grid graph. There is not enough capacity on the high voltage lines to move the power down south. As we start turning load on in a coordinated and localized way to match low and negative prices, we will start hitting carrying capacity constraints on the lower voltage lines as well. Imagine, for example, all the houses on a cul-de-sac equipped with electric space heating and cars. If they all turn on at the same time, they would overload the transformer serving this street. Therefore, we care about the location on the topology of the grid on multiple scales, typically demarcated in a hierarchy defined by voltage transformers. This issue of creating new problems at the lower-voltage level has not been a problem as long as Demand Response has been only about turning things off. However redefined Demand Response is as much about turning things on.

The final note about geographical location: we believe that lat/lon, combined with maps that can show street wires and substations, is likely the best choice for identifying a TerminalAsset’s topological location. We considered for a long time just maintaining an internal graphical representation, since when we are solving the distributed power flow problem the graph and its edge capacities are all that matter. But a problem with this solution is that it would require a centralized authority for providing a source of truth for the grid topology. This central authority could then bottleneck the TerminalAsset validation process by insisting that they approve it. More practically speaking, the topology of most of the lower voltage lines are not in graph form (i.e. as a math structure in a code object), and sometimes not even publicly available. Therefore, we decided our best bet is to build up from lat/lon and create a structure which would allow for utility provision of 1-line diagrams when they have them and are willing to share, but also allows for a more free-form collective construction of a current best shared source of truth for a graph of the electric grid.

Finally, a TerminalAsset is more than just a meter and a physical location. Transactive assets that can match wind and solar tend to be devices that have a primary service they provide, and embedded storage and/or flexibility in terms of when they use energy. To a good job of providing the primary service while also buying low-cost energy requires a detailed model of the device and its primary use, combined with weather and price forecasting to create near-optimal bidding strategies. If I swap out my Tesla for a small refrigerator, the same meter and location now belong to a different TerminalAsset.

Part 2: Clarifying How

Part 2a: The GNodeFactory, a Least Common Denominator for GNodeRegistries

The main technical work that GridWorks has done in the past revolves around the design of bidding agents for thermal storage TerminalAssets; this is the code run by AtomicTransactiveNodes. We organize our TerminalAssets by building up our own internal best guess of a spanning tree of the electric grid which includes not only the TerminalAssets but several other classes of GNodes (“G” for Grid), notably ConductorTopologyNodes, which represent nodes in the topology of the copper cables and wires (for example, a substation and a transformer would both be ConductorTopologyNodes). We maintain structured identifiers for GNodes which we call Aliases or GNodeAliases. These aliases encode the spanning tree structure of the copper grid. For an illustration, see Figures 1 and 2 below.

Figure 1: The Maine Electric Grid and the Area of the Millinocket Storage Heat Pilot

[image: alt_text]

Notes:

	CMP and Versant are the two Investor-Owned Distribution Utilities in Maine. Both are part of the New England grid operated by ISO New England.

	This figure shows only transmission lines and substations down to a voltage of 115 kilovolts. There is (obviously) much more fine-grained detail to the low-voltage electrical distribution system.

	The town of Millinocket is just west of the detailed area, and is served mainly by the Powersville Road substation.

	Stetson and Rollins are the third and fourth largest wind farms in New England. All of their generation goes through the Keene Road substation, which constrained about 25% of the hours in the winter months.

Figure 2: Example of GNodeAliases for a home in Millinocket and all of its ancestors

[image: alt_text]

Notes:

	Note that each node above the AtomicTransactiveNode corresponds to a physical location on the map in Figure 1.

	Each GNodeAlias contains its parent’s GNodeAlias, thus encoding the spanning tree structure of the copper grid.

	There are likely branches in the tree between Powersville Road and the TerminalAsset. Since we do not have information at this level of granularity, this is not included, but can be added in the future as we gather more information about the distribution system’s topology, and discover potential low-voltage constraints that need to be honored.

The GNode parent of each TerminalAsset is a node exactly at its meter. This GNode starts out as an AtomicMeteringNode, where atomic means that there is no sub-meter below that node in our spanning tree. This GNode becomes an AtomicTransactive¬Node once it has the authority and ability to:

	Manage the charging state of the TerminalAsset – and thus bear full responsibility for how well the TerminalAsset meets its primary purpose, and

	Represent the owner of the TerminalAsset – that is the person or entity bearing the ultimate financial responsibility for contracts founded on the metering results of the TerminalAsset’s electric meter – in electricity markets.

Using a spanning-tree structure there is a natural 1-1 assignment of spanning tree edges with nodes. While there are loops in the copper, the graph is relatively tree-like, with branching levels demarcated by voltage change. We can do a pretty good job of bringing the location-specific real-time prices down to a finer granularity just by focusing on adding new market clearing mechanisms (what we call MarketMaker GNodes) at GNodes in the spanning tree whose parent edge represents a binding constraint on power flow, and thus create local pricing.

More practically, the spanning tree encoded in GNodeAliases provides us with a mechanism for organizing our code. For example, the transactive bidding agent described above identifies within our system the AtomicTransactiveNode GNode described above, providing its GNodeAlias in message-passing mechanisms (mostly RabbitMQ, with routing keys that include GNodeAliases). Some GNodes - TerminalAssets and ConductorTopologyNodes – are passive representations and do not have code identifying as them. Some GNodes – AtomicTNodes and MarketMakers – are associated with specific parts of the copper infrastructure and have an application sending and receiving messages that identifies as the Node. Finally, we also use the GNodeTree to organize additional service GNodes that support the ecosystem and are typically just software, with no physical counterpart.

As a result, we handle the problem of identifying, storing relational data for, connecting with, and organizing time-series data from the various parts of our system by hanging this data off the GNodeTree and calling the result a GNodeRegistry.

The biggest struggle we had in the design process was dealing with all the types of data we currently manage in our GNodeRegistry. As mentioned above, the physical device is part of the TerminalAsset tuple, and if a device is changed out for one with very different use or electrical characteristics, we want to retire the old TerminalAsset and create a new one. At first, we assumed we wanted to include a categorization of the physical characteristics of the physical device that would need to be checked and recorded as the TerminalAsset was validated. We then came up with the idea of creating two GNode trees: a sparse tree of BaseGNodes where the stored attributes are pared down to not much more than a unique immutable identifier, the mutable GNodeAlias that encodes the tree structure, and the role (TerminalAsset, ConductorTopologyNode, AtomicTNode, etc.) We call the service maintaining this tree the GNodeFactory; it is the authority on the copper topology within the system. The much busier GNodeRegistry is thus not the authority on the copper topology, but contains details on the TerminalAsset device (for a heating system, the make/model of heat pumps, water heaters, resistive thermal storage heaters, etc) and information about peripheral devices and parameters (circulator pumps, mixing valves, source and return water temperatures, etc.).

These details are exactly what the AtomicTransactiveNodes require to bid for and control their TerminalAssets.

This separation of the spare GNodeFactory from the busy GNodeRegistry works well for at least two reasons:

	It allows us to sharpen the design of the GNodeFactory by limiting its purpose. The GNodeFactory is not responsible for maintaining the data required for running good bidding agents.

	It allows multiple GNodeRegistries – potentially run by different companies and serving different types of bidding agents and business purposes – to share the least common denominator of a grid topology and the market structures built on that topology.

Part 2b: The TaDeed

The validation process involves creating and transferring a TaDeed NFT. An Algorand account owning a TaDeed is an abstract representation of a homeowner owning their metered electric heating system.

[image: alt_text]

It is a very simple NFT. None of the mutable addresses are used other than manager, the unit-name is always TADEED, and the asset-name will become the GNodeAlias of the TerminalAsset.

There are two main issues to handle.

The first is what to do when the current shared understanding of the electric grid updates in a way that results in renaming this TerminalAsset’s GNodeAlias. For example, if the above TerminalAsset is located in Millinocket ME, we may only at first identify it as being served by the Keene Road 345 kV substation, with its parent node as the Distribution Utility, Versant. We will give it a GNodeAlias of d1.isone.ver.keene.holly.ta. Imagine we then realize that the Powersville Road substation should be included in our representation of the topology. This results in the creation of a new ConductorTopologyNode GNode d1.isone.ver.keene.pwrs, which triggers GNodeAlias updates for all of Keene’s descendants in the spanning tree. For example, Holly’s TerminalAsset GNodeAlias must change from

d1.isone.ver.keene.holly.ta

to

d1.isone.ver.keene.pwrs.holly.ta.

This must be reflected in her TaDeed as well.

The second issue is how the TaDeed creates a link of trust between the physical TransactiveDevice and the TerminalAsset representing it. In our Maine pilot, ISO New England’s willingness to enter into energy market transactions based on a new metering arrangement will hinge their trust of this link. We discuss how we are addressing this in detail below. In a nutshell, anybody can sign up as a TaDeed Validator (or TaValidator) if they are prepared to stake their public reputation on their attestations of accuracy in their TA validation process and in particular on the accuracy of their validation of the quality of the meter and its location.

Updating GNodeAliases

Originally we considered overloading one of the mutable address fields (reserve) with the hash of a pointer that could lead off-chain to the GNodeAlias as well as a goodie-bag of other useful information about the TerminalAsset. In the end we decided to make the TerminalAsset’s GNodeAlias an immutable field of the TaDeed.

This decision to brand the NFT with the GNodeAlias requires that we issue a new NFT when the alias changes. This brings two additional challenges. The first is a process of cleaning up the old NFTs so that the GNodeFactory is not left holding the bag on a very large number of unused NFTs. The second is that when a ConductorTopologyNode near the root gets added, it will result in a potentially very large number of Alias updates all of which need to go live within roughly the same second, at least in the way our operational system of AtomicTransactiveNodes and MarketMakers works at present. There are a number of ways this could be implemented, and it is an area where I hope to pick the brains of developer support staff at Algorand.

The question of time is an interesting one. This implementation of the GNodeFactory stores the GNode data in a database table, with a GNodeHistory table for tracking timestamped updates (for example updates to the Role, to the Alias or to the lifecycle Status). These timestamps could be relevant in contractual disputes. We expect there will continue to be a role for a database within the GNodeFactory, in particular for maintaining authority about the timing of registry events. Note, in contrast, that the topological structure belongs more appropriately on chain. One of our ambitions (although not a commitment) for this project is to move the lat/lon data out of the database and into a PyTeal contract. Permission to access the precise geographical data backing up the topology, as well as the mechanisms by which topology changes occur, will then not be under the province and discretion of a centralized authority (GridWorks) but rather built into a smart contract.

Building energy markets with blockchain may have similar issues to what the first railroads experienced with timekeeping.

Prior to the late nineteenth century, timekeeping was a purely local phenomenon. Each town would set their clocks to noon when the sun reached its zenith each day. A clockmaker or town clock would be the “official” time and the citizens would set their pocket watches and clocks to the time of the town. Enterprising citizens would offer their services as mobile clock setters, carrying a watch with the accurate time to adjust the clocks in customer’s homes on a weekly basis. Travel between cities meant having to change one’s pocket watch upon arrival.

However, once railroads began to operate and move people rapidly across great distances, time became much more critical. In the early years of the railroads, the schedules were very confusing because each stop was based on a different local time. The standardization of time was essential to the efficient and safe operation of railroads.

In both cases, there is a real-time control-engineering problem with global scope requiring cooperation between distributed actors. These actors often have a local concept of a physical reality that may only eventually be consistent with each other. Purely financial transactions, or those involving commodities that maintain their identity through time (like a house, or a gold coin) can be less concerned with knowing exactly when a transaction occurred than transactions where the good is delivered over electrical lines in a specified 5-minute time interval.

This means that caution is warranted before moving the GNodeFactory’s authoritative timestamps on chain.

Part 3: The Link of Trust between the TaDeed and the TerminalAsset it Represents

We lay out the basic dynamic by introducing three actors:

[image: alt_text]

[image: alt_text]

[image: alt_text]

Each edge in the triangle of these 3 actors is active:

	Holly and Polly are the potential counterparties for an energy transaction based on the meter for Holly’s TransactiveDevice.

	Holly is comfortable sharing private information with Molly.

	Polly trusts the validity of the TaDeed because it has been signed by Molly, whose validation capability and integrity she trusts.

We do not place any restrictions on who can sign up to be a TaValidator. However, becoming a TaValidator means being held publicly accountable for all the TaDeeds you have certified. In addition, a TaValidator with no reputation among potential transaction counterparties is unlikely to be asked to certify many TaDeeds.

As we describe above, our first real-world potential “Polly President” is ISO New England. The code demo for this milestone focuses on the interactions between Molly, Holly, and the registries (both the GNodeRegistry and the GNodeFactory). This comes down to the TaValidator creating the Link of Trust in following figure.

Figure 3: The Link of Trust

[image: alt_text]

Counterparty Risk

When GridWorks principals’ previous company became a small Energy Supplier in PA a decade ago, we needed to provide several hundred thousands of dollars in escrow both with the State of Pennsylvania and with the Mid-Atlantic Grid Operator PJM. Likewise, to become an active participant in the ISO NE wholesale markets requires collateral on the order of $1M. These are appropriate levels of consideration for merchant power companies operating hundreds of MegaWatts of generators. They are not appropriate for residential-scale TerminalAssets.

On the other hand, there is a reason why all contracts involve some consideration. A good contract is one which requires the counterparties to think seriously about entering into it and then do it for a compelling enough reason that they can back it up with some skin in the game.

In our first GNodeFactory implementation, TaValidators must provide 100 Algos when they sign up for their ValidatorCertificate. This consideration is meant to be an indicator that they intend to validate 1000 TerminalAssets.

Homeowners must also provide funds prior to receiving their TaDeed. At present this level is set to 50 Algos. Since the GNodeFactory has no information about the typical annual energy and power use of a TerminalAsset, we instead begin with a fairly minimal “starter threshold.”

We rely on Multisig addresses for gluing together the sequence of creating and transferring TaValidatorCerts (the flow of setting up MollyMetermaid as a TaValidator) as well as for creating TaDeeds and their corresponding TerminalAsset GNodes, and transferring and/or exchanging TaDeeds.

For a TerminalAsset to be created by the GNodeFactory (with a lifecycle status of Pending) the TaDeed NFT with the correct GNodeAlias must be created by the 2-signature multisig address [GNodeFactory AdminAddress, TaValidator Address]. This creation event occurs prior to the TaValidator doing the work of validating the accuracy of the physical meter and location of the corresponding TransactiveDevice. For the GNodeFactory to move the lifecycle status of the TerminalAsset from Pending to Active, the TaDeed must belong to the 2-signature multisig address [GNodeFactory AdminAddress, TaDaemon Address, TaOwner Address]. The transfer of the TaDeed to this account is the action taken by the TaValidator (and co-signed by the GNodeFactory) once the TaValidator has finished their validation process.

The TaDaemon above is a python application designed with a set of very simple rules about what it will and will not-cosign and submit to the blockchain:

	It will co-sign and submit any appropriately formatted and signed MultisigTransaction submitted to it by the TaOwner.

	It will co-sign and submit opt-ins and asset-transfers created and signed by the GNodeFactory, but only those that are specified according to some very specific axioms designed for replacing old TaDeeds with new ones (for the same TerminalAsset) as described above in the section about updating GNodeAliases.

This gives the homeowner freedom to do what she wants with the multi account, including transferring the TaDeed out of it (which will degrade the status of her TerminalAsset unless this is done under a new contractual agreement with the GNodeFactory). But at the same time, the evolution of the grid topology does not require continued decision-making and action from homeowners. While our first implementation of the TaDaemon is in straight python, it is an obvious choice for our first PyTeal smart contract.

I mention these implementation details in the context of counterparty risk because this 3-address, 2-signature multi structure could be a natural initial address for placing collateral as the homeowner enters into additional contracts required in order to get to the point of real-time 5-minute market trading. Specifically, the cornerstone of the next Milestone is to implement a Representation Contract between a TerminalAsset and its parent. In fact, the parent starts life as an AtomicMeteringNode (which is another “passive” role for a GNode and means there is no active code actor identifying as that GNode) and becomes an AtomicTransactiveNode by the act of receiving another NFT – this one called a TaTradingRights certificate. The TaTradingRights NFT is created by the homeowners 2-sig, 3-account multi. The exchange of the TaTradingRights NFT is designed to occur both in the context of the Representation Contract (which is a formal contract in code that specifies how control is passed back and forth between the cloud-based AtomicTransactiveNode and however the TerminalAsset would operate when, say, not connected to the Internet) and a business contract in the form of a Service Level Agreement between the homeowner and an organization with the means and authority to:

	Transact in larger markets (like an aggregator who can pool together hundreds of homes in order to meet minimum size requirements for participating in ISO NE wholesale markets);

	Manage the deployment of AtomicTransactiveNode code with the capability and means to both control the charging of the TerminalAsset on the one hand and transact in markets on its behalf on the other; and

	Back a guarantee of performance by the TerminalAsset for its primary use.

In the process of structuring the Representation Contract and the Service Level Agreement, more detail about the TerminalAsset will come to light, such as its maximum power and its typical annual energy use. This is the point which is analogous to a merchant power company becoming a member of its regional electric grid, and therefore the correct time for the homeowner to add additional funds to the joint account that lowers counterparty risk.

We originally implemented the structure of a 2-signature, 3-address multi to facilitate the process of updating TaDeeds. As described above, this structure also has the potential for additional use in mitigating counterparty risk.

GridWorks Simulation of an Electric Grid

As an organization, we have been putting most of our technical focus – outside of this grant – on this winter’s pilot of hydronic thermal storage in Millinocket.

On that project our priorities, in order of immediacy, are:

	Deploying a system that keeps people warm when it operates on its own without dispatch instructions from a cloud-based AtomicTNode.

	Running the 5 homes with AtomicTNodes under currently available rates as well as with a simulation of these TerminalAssets accessing the local real-time prices.

	Provide testing of the accuracy of our SCADA meters by putting them in-line with third party meters

	Preparing to scale to 100-500 homes next year. This priority includes realistic simulation of a 10 MW aggregated Transactive Load.

From the perspective of the GNodeFactory project, it is great that we have a 5-home demo where we ourselves will be intimately involved with both the metering and the provisioning. This gives us a chance to try out our ideas about what might work regarding the TaDeed process with real people and homes.

Prior to this grant, the GridWorks GNodeRegistry was our authority on the topology of the grid. This authority now rests with the newly created GNodeFactory, and with this milestone we have put the GNodeFactory “on chain”. By the next milestone, this GNodeFactory will be connected to the existing GridWorks GNodeRegistry, and will form the foundation of our simulations.

One of the most exciting prospects to me right now regarding the synergy of the Algorand work and the Maine work is that we are working on the very top (GNodeFactory) and the very bottom (SCADA) of our technical ecosystem, and they are connected. One of our new stretch goals for this project is to integrate the TaDeed creation and transfer – that is happening in the GNodeFactory – with the authorization and authentication process we have for the SCADA in the Maine pilot. It would be very satisfying to have the GNodeFactory and its on-chain transactions validating real TerminalAssets getting installed in homes this winter.

Input of GNode Registry on Algorand Chain in a Dev Universe

The readme [https://github.com/thegridelectric/g-node-factory/blob/main/README.md] of this repo includes instructions for running the demo [https://github.com/thegridelectric/g-node-factory/blob/main/python_code/demo.py] and test suite. The demo is one long script that fires up three actors – the GNodeFactory, MollyMetermaid and HollyHomeowner – and walks them through the message passing sequences up to the point where Holly Homeowner’s TerminalAsset has been validated and exists in the GNodeFactory as an active CoreGNode. While the repo is set up to be dockerized, there is not much point at this stage where all the action is in a single script, as opposed to having multiple actors interacting with each other across different docker instances. The lion’s share of code exists in schemata that provide strong typing and semantic checking on the payloads passed between actors.

Incentives and Potential Scope

Why will this technology be adopted? There is two-part answer to this question. The first answer is that we will focus on a few specific areas with the potential to create real value for end-users. This will start in Maine, and then likely move to the wind belt in the Midwest. In these areas, we focus on getting our technology to work well. It is critical to get the TaDeed foundations set up correctly, and likewise important to handle counter-party risk correctly as discussed above. However, our primary focus in terms of incentive design will not be on tokenomics, but rather on aligning incentives between homeowners, the companies who choose to provide them with Service Level Agreements for their heating, and equipment financers (likely green bank loans). If we can in fact unlock access to the true local cost of electricity, a home that could expect an oil heating bill of $3000 a year has the potential to drop its heating costs to under $1000 a year. Some of these savings will go to pay for the additional cost of installing new thermal storage heating systems. But even so, there is an enormous amount of potential value that can be unlocked by redefining Demand Response.

This demonstration phase – which we anticipate lasting 2-3 years – provides a development window for getting the fundamental market mechanics of the GNodeFactory in order. In this window of time, we can lay down the correct structures – in a formalized axiomatic approach to messages, in semantic validation and model-checking, in APIs, in a domain-driven lexicon, and in a set of in-depth and technical tutorials linking together how the system works – rather than creating polished front ends which, at this point for us, will almost certainly get these things wrong.

This demonstration phase will also provide an opportunity for the industry to begin to work out the business practices, mechanics, and technology of Transactive Energy Management. PyTeal market contracts are not enough: code will need to be written to perform Measurement and Verification (M&V) of energy data, to facilitate auditing and reporting by new industry participants, to handle dispute resolution, and to deal with many other issues foreseen and unforeseen.

The second answer is that commercial demonstrations of transactive load, coupled with a fundamentally sound and well-documented technology, will have the power to transform thinking in the industry. Given the conservatism of the electricity industry, this second phase could take longer, and will require thinking through and fine-tuning the incentive structures and tokenomics of the mature PyTeal contracts, the creation of artistic front ends that expand beyond the initial dev audience and simplified but powerful messages with pointers back into a wealth of correct lower-level details that we are creating now.

Next Milestone

Here is the deliverable summary from the original SOW for Milestone 2, due Nov 3 2022.

[image: alt_text]

Milestone 2 has two major deliverables:

	An implementation of the representation contract between a TerminalAsset and its AtomicTransactiveNode, ending with the creation and transfer of a TaTradingRights NFT to the AtomicTransactiveNode.

	A 10 MW simulation of transactive load. This second deliverable requires connecting the GNodeFactory with the rest of the GridWorks systems and, among other things, will provide stress-testing for the GNodeFactory.

In addition, we will make additional progress in the following areas.

	Adding a few more natural flows:

	At present GNodeFactory updates the Status of a TerminalAsset to ‘Active’ after (1) the validator finishes validation and sends a TransferTadeedAlgo request to the GNodeFactory and (2) the GNodeFactory co-signs and transfers the TaDeed to the Ta-Multi account. We could add a time-limit (like 2 months) for the validation to occur, and move the status of the TerminalAsset to ‘PermanentlyDeactivated’ if it has not become ‘Active’ before the deadline.

	The GNodeRegistry is not an active Actor in this milestone and should be brought into the mix. Right now, the creation of a TerminalAsset (with lifecycle status ‘Pending’) is triggered by the validator sending a CreateTadeedAlgo payload to the GNodeFactory. We can change this up so that prior to paying attention to that message, the GNodeFactory must have already received a CreateTerminalassetAlgo payload from a GNodeRegistry, referring to the same pending GNodeAlias.

	Create/update actions taken by the GNodeFactory should typically end with sending a StatusBasegnode message to all GNodeRegistries.

	Move the process of [funding the TaMulti account and having it opt into the TaDeed] out of the Validator actor and into the TaDaemon actor.

	Improving our validation formalization, starting with both expanding and simplifying our schema formalization.

	Implementing our first Smart Contract. This contract will manage the exchange of old TaDeeds for new TaDeeds with updated GNodeAliases, as described above.

	Beginning the design specification for our second smart contract project, which will move all the location-, alias- and role- specific data out of the GNodeFactory database and into a single smart contract. We plan to use Jason Paulos’s Algoship game as a template. The similarities include a common spatial/geometric playing board with multiple players, not all of whom can (or choose to) share location information, and at the same create some mechanism so that players can trust that the other(s) are not cheating. Having the majority of the GnodeFactory intelligence on-chain will remove the centralized authority of GridWorks from the trust mechanism.

	Beginning to develop a cli, or a text user interface (TUI) for the GNodeFactory so that GridWorks can rely on the GNodeFactory for our operations in Maine this winter. We may start this by changing the milestone 1 demo from a non-interactive script into a choose-your-own-adventure style TUI.

We end this section with a short description of the working team. The initial design work, culminating in the clarification of the definition of TerminalAssets and articulating the purpose of the GNodeFactory, was carried out by Jessica Millar of GridWorks along with Bill Bradley and Karl Knaub of Mirabolic. Prototyping the DEX code was carried out by Jessica and Karan Nayan. Articulaton of the underlying business logic was done jointly by Jessica Millar and George Baker of GridWorks. Lukasz Tymoszczuk has come on board recently to begin work on the first Smart Contract. Lukasz and Jessica will work jointly on smart contracts, with Jessica focusing more on the ABI and formal design and Lukasz focusing on implementation. During this first milestone, we did not engage substantively with the larger Algorand development community. Going forward, that will change.

Here is a short list of topics where we are looking for outside help and guidance. This list will be fleshed out and updated in our wiki at an office-hours page.

	Fleshing out mechanisms for incentivizing the accurate identification of not just TerminalAssets but ConductorTopologyNodes.

	Adding structure so that validation must be occasionally renewed to maintain an active TaDeed. Most generators need to get their metering re-tested once a year. This would be cost-prohibitive for most household load. One idea we like is creating a Poisson process that generates a small random probability of having the validator come and re-test for the TaDeed to stay active. What would it look like to design this into a PyTeal contract?

	Work through the timing of exchanging an old TaDeed for a new one that does not disrupt the operational flow of the GridWorks system founded on top of these TaDeeds. I have introduced an extra “graveyard” contract belonging to the admin to help with that (with the idea that assigning the manager to “graveyard” would indicate a liminal state).

	Getting a sense for the development required for creating user interfaces. Although we do not intend to build polished UIs in the short run, by next year we will require at least a user interface for installers. In addition, we want a sense for the scope of development work necessary for building reasonably nice user interface that can track the ownership history of TaDeeds and TaTradingRights.

	Our GNodeAlias often run longer than 32 characters, so we cannot keep using them as-is for the asset_name. We will need some other mechanism for associating the GNodeAlias immutably with the TaDeed.

	Getting pytest working in github actions. This will require a local algorand sandbox working (I assume from a docker instance) when the tests are running in github.

Additional goals

Move the aspect of the GNodeFactory that maintains a shared comprehension of the topology of the electric grid
into a smart contract. This way, as the system scales, there is not a centralized application as the source of truth
for this collectively built knowledge. We plan to use Jason Paulos’ algoship game [https://github.com/jasonpaulos/algoship] as inspiration.

Office Hours

This page contains a list of topics where we would appreciate outside help and guidance.

Incentivizing accurate identification of ConductorTopologyNodes

Fleshing out mechanisms for incentivizing the accurate identification of not just TerminalAssets but ConductorTopologyNodes.

Adding occasional renewal to maintaining active TaDeed

Adding structure so that validation must be occasionally renewed to maintain an active TaDeed. Most generators need to get their metering re-tested once a year. This would be cost-prohibitive for most household load. One idea we like is creating a Poisson process that generates a small random probability of having the validator come and re-test for the TaDeed to stay active. What would it look like to design this into a PyTeal contract?

Implementing better mechanics for exchanging an old TaDeed for a new one

Work through the timing of exchanging an old TaDeed for a new one that does not disrupt the operational flow of the GridWorks system founded on top of these TaDeeds. I have introduced an extra “graveyard” contract belonging to the admin to help with that (with the idea that assigning the manager to “graveyard” would indicate a liminal state).

Building User Interfaces

Although we do not intend to build polished UIs in the short run, by next year we will require at least a user interface for installers. In addition, we want a sense for the scope of development work necessary for building reasonably nice user interface that can track the ownership history of TaDeeds and TaTradingRights.

Better mechanism for branding GNodeAlias into TaDeed

Our GNodeAlias often run longer than 32 characters, so we cannot keep using them as-is for the asset_name. We will need some other mechanism for associating the GNodeAlias immutably with the TaDeed.

Pytest working in github actions

We’d like to have our tests be part of continuous integration. This will require a local algorand sandbox working (I assume from a docker instance) when the tests are running in github.

Redefining demand response

Renewable energy is variable and not controllable. Electrical load (i.e. anything that uses electricity), in its current manifestation, is almost completely oblivious to the state of the electric grid and the
availability of power. The electric grid needs to maintain a balance between generation and load at every time scale, and also geographically across the network of the grid. The grid needs an upgrade in its balancing resources.

If we can identify electrical loads that have flexibility in when they use electrical energy, then they can become these next-generation balancing resources. In fact, there is already a mechanism in place (mostly) for making this work economically: the high voltage grid has time- and place- varying wholesale electricity markets which to first order do a very good job of reflecting the abundance (or lack thereof) of energy. In fact, there are starting to be a number of areas where wholesale prices are routinely driven negative typically due to a transmission constraint, and a lot of wind and/or solar behind that constraint. These places point to an emerging problem, and its a great problem to have: we are ignoring abundance.

 The Layer 1 contract supporting NFT ownership
and creation (TaDeed, TaTradingRights)

 TerminalAssetDeed (taDeed)

This is an NFT establishing ownership rights of a TerminalAsset.

[image: alt_text]

Placement of this deed in the 2-sig, 3-owner multi account [GnfAdmin, TaOwnerSmartDaemon, TaOwner] (call this taMulti) is a prerequiste for the GNodeFactory to change the TerminalAsset GNodeStatus from Pending to Active.

Funding that taMulti account with 100 Algos is a prerequisite for receiving the taDeed. The intention is for this to be the beginning of financial assurance once an agent is actively transacting in electricity markets on behalf of the TerminalAsset. The final size of that financial assurance will be determined by
the counterparties of the market transactions. It will scale with the typical monthly energy transaction size
of the asset.

A prerequisite for creation of the taDeed is that a third party Validator attests to the accuracy of the following information:
_ Physical location of the TerminalAsset device and meter as provided by the taOwner (lat/lon)
_ The TerminalAsset electricity meter is accurate ()
_ The meter is measuring the TerminalAsset and nothing else
_ The parent GNode - as determined by the GNodeAlias - exists in the GNodeFactory * There are no known GNodes that exist on the copper GNode spanning tree between the parent
and the TerminalAsset (Be more explicit)

The chosen validator must have a ValidatorAddress, and the joint account [GnfAdmin, Validator] (multiValidator) must
have a ValidatorCerticate NFT. Anyone may become a Validator through the ValidatorCertification process. The ValidatorCertifcate provides public accountability of the Validator and includes a web page. This
way, potential counterparties for energy transactions with the TerminalAsset can evaluate how confident
they are of the location and metering of the TerminalAsset by examining what entity validated their
taDeed.

The taDeed is created by the multiValidator account.

Terminal Assets

A TransactiveDevice is a tuple of 3 physical things:

	An electrical device connected to the grid that can consume and/or produce electrical power;

	An electrical meter that meters exactly the Terminal Asset and has the accuracy characteristics required to meet existing and pending grid balancing challenges (that is, the challenge of keeping electric supply and electric demand in balance on various timescales as wind and solar electricity become more prevalent); and

	A geographical location of the location where the electrical device connects to the electric grid.

A TerminalAsset is a tuple of 3 things:

	An electrical device connected to the grid that can consume and/or produce electrical power;

	An electrical meter that meters exactly the Terminal Asset and has the accuracy characteristics required to meet existing and pending grid balancing challenges (that is, the challenge of keeping electric supply and electric demand in balance on various timescales as wind and solar electricity become more prevalent); and

	A lat/lon pair that can be used to capture where the electrical device is connected to the topology of the electric grid.

boundary between the physical world and the world of code, maintaining a high fidelity connection between Transactive Devices and digital representations of these Transactive Devices as TerminalAssets.
In short, a TerminalAsset is a representation in code of a TransactiveDevice in the real world.

Here is the icon we use to represent TerminalAssets

[image: alt_text]

Transactive Energy Resource

A Transactive Energy Resource is a physical resource capable of 24-7, real-time, geographically localized response to grid conditions that can significantly shift and adapt its pattern of electric power use and/or generation with negligible negative consequences on its primary use.

Transactive Load is a Transactive Energy Resource that only uses electricity and does not generate electricity.

Why the low-voltage electric grid topology matters

Imagine we have a large cul-de-sac where all the people living there have gone all-in on this premise. They have converted their gas and oil space and hot water heating to heat pumps coupled with thermal stores. They’ve traded all their gas vehicles for EVs. And all these electrical appliances are paying attention to the wholesale price of electricity and doing their very best to buy in the lowest-cost wholesale hours (which is in fact closely aligned with using low-carbon electricity.)

In this scenario, the local low-voltage lines and transformers serving this cul-de-sac will likely catch fire.

We give a thumbnail explanation of this. The electric grid is a somewhat hierarchical graph. To a first approximation, most of the constraints on power flow happen at places where voltage changes, called sub-stations. The graph is pretty well instrumented and modeled at the high-voltage levels, where the grid operators operate the lines and run markets (think of the markets as the grid operator’s first and best tool for grid operation). However, the graph at the lower voltages is not very well mapped out. Distribution utilities own and maintain these lines. Some of these utilities have decent 1-line diagrams of their lines but most are partial, only in paper-based records, or both. But what can absolutely be said is that when these lines were designed, it was with the assumption that load ignored the electric grid and that a healthy dose of the central limit theorem could be applied. Also, of course, the lines were not designed to serve all-electric households.

What this means is that we need to play a game of battleship with the grid topology. As new transactive load is built, it needs to be participatory in discovering the unknown topological structure.

 _images/copper-spanning-tree.png
Conductor Topology Node (CTN)
Grid Operator

o
Distrbution Utily
‘GNodelas: dLisone.cmp

an
345 kv Substation
‘GNodelias: d1isone.ver.

esece g

an
Distrbution Utity
‘GNodeAias: dLisone.ver

an
345 K Substation
‘GNodeAlias; d1isone.ver keene

o
115KV Wind Farm
‘GNodelias: dLisone:
keenestet
Atomic Transactive Node (ATN)
14 kW Agent for a space heating system
‘GNodeAlias: d1isone ver keene.pwrs.holly

Terminal Asset (TA)

18 KW Space Heating System
‘GNodeAlias: d.isone verkeene.pwrs.hollyta

_images/core-actor-triangle-artifact-v1.png
Core Actor Triangle

Holly Homeowner
Role: TransactiveDeviceOwner

Molly Metermaid
Role: TrustedValidator

Polly President
Role: EnergyTransactionCounterparty

Relationship A: The energy counterparties

Holly Homeowner wants her transactive load to turn on
when the wind is blowing and the wholesale electricity prices
are low, and she wants her cost of electricity with her local
electricity coop to reflect the actual cost of her transactive
load buying energy.

Polly President is fine with this, but she needs to know where
on her distribution system this transactive load is getting
installed, as well as verification that it has revenue-grade
submetering, and some of its core electrical characteristics.

Relationship B: the validator whose word and technical
expertise the EnergyTransactionCounterparty trusts

Polly President has had Molly Metermaid do several
measurement and verification studies for some grants and
trusts her technical competence and honesty.

Relationship C: Molly pays a house call to Holly

Holly is comfortable with having Molly at her house and is
happy she chose Molly’s outfit out of the list of
TrustedValidators that the coop had provided.

_images/bangor-1-line-street-overlay.png
1/ - = _J

Transmission Network — Bangor Area

| Dk Green - 46kV, 115kV & 345kV Transmission

T

D E’NBURN 3

_images/gnode-creation-request.png
GNode
Registry

-« Holly Homeowners Algo Account

+ Holly Homeowners Public Key

Terminal Asset

Creation Request ~ > Encrypted location data for Holly's transactive device

4 Requested GNode alias

GNode
Factory

_images/holly-ta-deed.png
{ ‘asset-holding': {'amount': 1, 'asset-id': 8, 'is-frozen': False},
‘created-asset': { ‘creator': 'YSTROXIJHWIAOHCZSWP4PZTCESSVWOF2KDTNYSHUSHLAUXBFQUDXGIRSHM ',
‘decimals': 0,

‘default-frozen': False,

‘manager' : 'RNMHG32VTIHTCW3LZOEPTOGREL STQGKAGHKD3KBLZHYQUCAKLHTAGSALT ",
*name': 'd1.isone.ver.keene.holly.ta',

*name-b64' : *ZDEuaXNvbmUudmVyLmt 1ZW5 |LnB3cnMuaG9sbHkudGE=",

‘total': 1,

‘unit-name': ‘TADEED',
‘unit-name-b64': 'VEFERUVE'},

*round': 71}

_images/gnf-ecosystem-1.png

_images/gnf-ecosystem-2.png
cow&o\w)i dovia dave CVar Boee oF
h€°\°’/& M\(L‘ | Loak g Cuedtes Clpdos W~()\
i i e o
Yl : i i T anlledielin &
ok e\ 5\\; = RO ed
(oo et ek
W@A&\a}«am TS S o L{d; Lisln
A S
S
Y
con dB05 DWW\ gil W&QmLWGQ\ﬂL@ Colt vesie, AOV/j s s
anflarii ol cookieli oF Gan woold

e AVLwC laso A;A
et
G~ b \ode w’hﬂ"\/ /\

ey
M&w us‘\/w\

7\
runs b bookes =
A)wlﬁw\ Ve e ()

7\
D> (Seroh

_images/hollyhomeowner-actor-artifact-v1.png
Holly Homeowner

Role: TransactiveDevice Owner

Holly lives in VinalHaven ME and has just replaced her oil boiler with a heat pump/thermal storage space heating system. She
lives in her own house and owns the heating system.

Motivations

Holly is looking to save money on her heating bills. She also cares about decarbonization and is excited to have her heating
system become part of the grid balancing solution for the future.

Core Needs

Holly is a single mom with a toddler. Her mother helps with childcare but has health problems. Holly works two service jobs.
She needs to make sure her house stays warm during the cold Maine winter, which can get down to -10F, and she needs to
pay the bills.

Pain Points.

Holly is excited about the promise of transactive load. But she is not very tech savvy, and she needs to understand what is
going on and feel like she s in the driver's seat when it comes to calling the shots for her family.

_images/load-dev-data.png
1SO New
England

Role: Other
Root of the dev world d1
GNodeAlias: d1

Role: ConductorTopologyNode (CTN)
Grid Operator
GNodeAlias: d1.isone

CTN
Distribution Utility
GNodeAlias: d1.isone.ver

CTN
LEIEIEN 345 kV Substation
GNodeAlias: d1.isone.verkeene

Role: AtomicMeteringNode
14 kW Agent for a space heating system
GNodeAlias: d1.isone.ver.keene.pwrs.holly

Role: TerminalAsset
14 kW Space Heating System
GNodeAlias: d1.isone.ver.keene.pwrs.holly.ta

_images/maine-1-line.png
Maine Electric Grid

Millinocket Storage Heat Pilot Area

BROOKFIELD, KATAHDIN PAPER.

POMERSVLLE RO

O P LEPREAY
NEW BRUNSWICK

EXISTING INSTALLATIONS LEGEND
o WIND FARM
o FOSSIL FUEL STATION
ot NUCLEAR STATION
o HYDRO STATION
A SUBSTATION
o PUMPED STORAGE
® SUBSTATION WITH INTERNAL
COMBUSTION GENERATION
a HvDC
| BIOMASS

345 KV TRANSMISSION
230KV TRANSMISSION

138KV, 115KV, & 69KV

nav.xhtml

 Table of Contents

 		
 G Node Factory

_images/mollymetermaid-actor-artifact-v1.png
Molly Metermaid

Role: Trusted Validator

Molly runs a small organization on the mainland that installs equipment and does metering and verification of various
efficiency and utility projects. She knows most of the electricians, plumbers and heat pump installers Downeast.

Role

Molly understands that Utilities and Grid Operators need to know where Transactive Devices are located on the electric
system, that their meters are accurate and reliable, and enough about the underlying devices to get a sense of how they will
impact the electric grid. She has a reputation with local utilities and governmental organizations as somebody whose work is
accurate and done on time. She also prides herself on the high level of comfort people have when she is in their house
installing measurement and verification equipment. She sees a role for herself as a trusted validator of these critical
specifications of this new type of grid asset.

Core Needs

Molly is looking for a simple but totally reliable way to verify and certify that the metering for a Transactive Device is installed
correctly and working properly, and at the specified location.

_images/new-ctn-flow-a.png
DQVD(';‘S’"S"" GNodeFactory Gnf Database

create.discoverycert.algo.001

AssetCreate Txn

Discovery Cert)
Discovery Certificate for new (Piscovery Cert)

ConductorTopologyNode (Ctn)

Create Pending Gtn GNode

Pending Ctr

Recursively update
aliases for pending

This requires exchanging descendants.

TaDeeds. See Flow 3b

No parent-child
edges have changed
yet.

Optin Txn
(Discovery Cert)

transfer.

coverycert.algo.001

Transfer the DiscoveryCert

AssetTransfer Txn (Discovery Cert)

Then .

a
UPDATE Ctn from Pending to Active

This lifecycle Status update is
‘what changes the parent-child edge
relationships for all the new
descendants.

anf

_images/milestone-1-deliverables.png
Milestone 1

GNode Registry on Chain

Report on key papers for Ethereum, Uniswap and Algorand
comparison

DEX prototype code developed

prototype code and written summary for Energy
Consumption Validation

Counterparty Risk report

Set up of the GridWorks simulation of an electric grid
Input of GNode Registry on Algorand chain in a dev
universe including the following artifacts
eDockerfiles.

oTest suite

#Set Up Documentation

_images/milestone-2-deliverables.png
Milestone 2

Core Transactions on Chain

GridWorks platform running simulation with 10 MW of
transactive loading a dev universe;each Terminal Asset —
Atomic TNode pairs with its own Representation Contract

on chain, including the following artifacts:
eDockerfiles

e Test suite

eSet Up Documentation

_images/ta-link-of-trust.png
Physical World Online World

TransactiveDevice ©) TerminalAsset
5

TaDeed

_images/new-ctn-flow-b.png
GNodeFactory HollyDaemon HollyHomeowner

2ssig [gnf.admin, holly daemon, holly]
Validator multi not actively involved

1A 100 A 50 A
; feony J Holly's Original
TaDeed

@~/
Holly's Original
e Assets created Tebeed
~
Assets created [ontaonoate_opin tadoed s | gptin.tadeed.algo.001
Holly's New TaDeed -

Lt generte_oxchange fadeed a0 . rvanatorrsn o Tasne)

exchange.tadeed.algo.010

AssetTransferTxn (Original TaDeed)

14 E‘J 50 A

2]

Assets created

_images/pollypresident-actor-artifact-v1.png
Polly President

Role: Energy Transaction Counterparty

Polly is the President of the Fox Island Electric Cooperative, the local distribution utility on the island of Vinalhaven ME. She is
responsible for all aspects of running the utility: buying power, billing customers (members), and maintaining the electric
distribution system. She lives on the island and is a well-known member of the community.

Motivations

Polly is looking to provide power at the lowest possible cost to the year-round and seasonal members of this island
community. She also cares about decarbonization and wants to do what she can to reduce the island's carbon footprint.

Core Needs

While the largest cost item for the Coop is maintaining the lines in this harsh marine environment, Polly spends much of her
time on trying to source the cheapest power possible for the Coop. She likes the idea of transactive heat in her coop, but she
needs to make sure it happens correctly. If the metering is reporting incorrectly in a way that inaccurately benefits the
homeowner, it will come out of the pockets of everybody else on the island. She is also worried that if more than about 150
homes add transactive heat it could start overloading her distribution system.

Pain Points.

High and volatile wholesale electricity prices are a constant concern for Polly. Electricity costs are already among the highest
in the country, and anything she can do to keep the cost of power low, especially for the year-round residents, is her highest

priority.

_images/ta-validator-cert-flow.png
Time

Figure 1:TaValidator Certification Flow

Inialze
(GodeFaciory RestAP!

TavalidatorcertAlgoCreate
Havalidatorcert-algo-createl

ValidatorCert NFT ID.

TavalidatorcortAlgoTransfor
Navalidatorcert-algo-transfer/ —

Gniael

Inialize
Nolly Metermaid

Woiye
@R ke
o

maly

RestAPI

Dockerized Actors

Jr——

RestAPI Post
Endpoint

Post

Post Response

Algo Txn

_images/terminal-asset-artifact-v1.png
f@ Terminal Asset

ATerminal Asset is a code object with 3 primary attributes:

-a characterization of an electrical device connected to the electric grid with known electrical characteristics
-a pointer to a power and electricity meter that meters all the electrical use of that device and nothing more, which is
considered revenue-grade by parties engaging in buying or selling electricity to an actor who owns trading rights for the asset
-a representation of a physical location that uniquely determines the topological location of the above meter on the electric
grid.

Itis also terminal node in the spanning tree graph of the copper tree encoded in the GNode Aliases, which are structured
identifiers of GNodes.

The point of a Terminal Asset is to act as a trusted digital representation of a Transactive Energy Resource which in fact is the
characterized electrical device, using the meter described, at the location described.

Definition: A Transactive Energy Resource (TER) is a Physical Resource capable of 24-7, real-time geographically localized
response to grid conditions that can significantly shift and adapt its pattern of electric power use or generation with negli
negative

_images/terminal-asset-creation-flow.png
Time

Figure 3:Terminal Asset Creation Flow

(GNodeFaclory RestAP! Molly Metermaid

Initalize Holl
Homeonner
RestAPl
ket tadesc akgo-create/ IniiaTadecdAlgoCreate Tacertity
Creates pending TerminalAsset iication! Dockerized Actors.
TaDeed ldx,
TaTradingRights ldx ‘TaDeed ldx, TaTradingRights ldx
Initaize .

TaDacmon ResiAP

e =]

o) —
e

Post
InitiaTadeedAlgoTransfer

Post Response

finitial-tadeed-algo-transfer Holy's

TaDeed Algo Txn

Activates TerminalAsset

Active TerminalAsset

e D

moly — Homsounar

_images/terminal-asset-trading-rights-icon.png
O,
g

_images/terminal-asset-deed-icon.png

_images/terminal-asset-icon.png
y .
&”\

_static/minus.png

_static/plus.png

_static/file.png

